
Teoria Espectral

1. Adjoint. Symmetric and Self-Adjoint Operators

We assume that H is a Hilbert space. In this section we will define
self-adjoint unbounded operators and study its properties.

Definition 1.1. Let A : D(A) ⊂ H → H be a linear operator densely

defined (d.d.) i.e. D(A) = H.

We define the adjoint A∗ of the operator A by{
D(A∗) = {η ∈ H : ∃ψ ∈ H such that (Aφ, η) = (φ, ψ) ∀φ ∈ D(A)},
A∗η = ψ.

Remarks 1.2.

(1) A∗ is well defined.

If there exists ψ̃ ∈ H such that

(Aφ, η) = (φ, ψ) = (φ, ψ̃)

Then

(φ, ψ − ψ̃) = 0 for all φ ∈ D(A)

which implies that ψ ≡ ψ̃ since D(A) is dense in H.

(2) We have that

(1.1) D(A∗) = {η ∈ H : Lη : φ ∈ D(A) 7→ (Aφ, η) is continuous}.

Indeed, we can extend Lη : D(A) = H → C continuous. i.e.
Lη ∈ H∗ implies there exists ψ ∈ H such that

Lη(φ) = (φ, ψ) ∀φ ∈ H

by the Riesz Theorem.
In particular, it holds that

(Aφ, η) = (φ, ψ) ∀φ ∈ D(A).

(3) It holds that

(1.2) (Aφ, η) = (φ,A∗η), ∀φ ∈ D(A), ∀η ∈ D(A∗).

Verify that A∗ : D(A∗) ⊂ H→ H defines a linear operator.
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Exercise 1.3. If A ∈ B(H), show that A∗ ∈ B(H) and it holds that

(Af, g) = (f, A∗g) ∀f, g ∈ H

and

‖A‖ = ‖A∗‖.

Properties. Let A : D(A) ⊆ H → H and B : D(B) ⊆ H → H be
two linear operators d.d. Then it holds that

(i) A∗ is closed.
(ii) (λA)∗ = λ̄A∗ for all λ ∈ C.
(iii) A ⊆ B implies that B∗ ⊆ A∗.
(iv) A∗ +B∗ ⊆ (A+B)∗.
(v) B∗A∗ ⊆ (AB)∗.

(vi) A ⊆ A∗∗ where A∗∗ = (A∗)∗.
(vii) (A+ λ)∗ = A∗ + λ̄.

Theorem 1.4. Let A : D(A) ⊆ H→ H a linear operator d.d., then it
holds that

(i) A∗ is closed;
(ii) A is closable if and only if A∗ is d.d. in this case Ā = A∗∗;
(iii) If A is closable, then (Ā)∗ = A∗.

Proof. To prove this theorem we will need some definitions and lemmas.

We start by considering the Hilbert space H×H equipped with the
inner product

〈(φ1, ψ1), (φ2, ψ2)〉 = (φ1, φ2)H + (ψ1, ψ2)H.

We define the operator

V : H ×H→ H ×H

(φ, ψ) 7→ V (φ, ψ) = (−ψ, φ).

Notice that V is a unitary operator. In fact,

〈V (φ1, ψ1), V (φ2, ψ2)〉 = 〈(−ψ1, φ1), (−ψ2, φ2)〉
= (ψ1, ψ2) + (φ1, φ2)

= 〈(φ1, ψ1), (φ2, ψ2)〉.

Lemma 1.5. If V : H→ H is a unitary operator, then

V (E⊥) = V (E)⊥, ∀E ⊆ H,

where E⊥ denotes the orthogonal set to E which is defined as

E⊥ = {φ ∈ H : (φ, η) = 0, ∀η ∈ E}.
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Proof. Let x ∈ E⊥ and y = V (e) ∈ V (E), then

〈V (x), y〉 = 〈V (x), V (e)〉 = 〈x, e〉 = 0.

Thus V (x) ∈ V (E)⊥ and so V (E⊥) ⊂ V (E)⊥.

Reciprocally, let y ∈ V (E)⊥, since V is a bijection it implies there
exists a unique x ∈ H such that y = V (x).

If for all e ∈ E,

〈x, e〉 = 〈V (x), V (e)〉 = 0

this implies that x ∈ E⊥ and so y ∈ V (E⊥). Thus V (E)⊥ ⊂ V (E⊥).
This concludes the proof of the lemma. �

Proof of (i) We denote by

G(A) = {(x,Ax) : x ∈ D(A)} ⊆ H ×H.

the graph of the operator A.
We can see that

(φ, η) ∈ V (G(A))⊥ ⇐⇒ 〈(φ, η), (−Aψ,ψ)〉 = 0 ∀ψ ∈ D(A)

⇐⇒ −(φ,Aψ) + (η, ψ) = 0 ∀ψ ∈ D(A)

⇐⇒ (φ,Aψ) = (η, ψ) ∀ψ ∈ D(A)

⇐⇒ (Aψ, φ) = (ψ, η) ∀ψ ∈ D(A)

⇐⇒ (φ, η) ∈ G(A∗).

This shows that G(A∗) = {V (G(A))}⊥ is closed. (since the orthogo-
nal of a set is always a closed subspace). Thus A∗ is a closed operator.

Lemma 1.6. If E ⊆ H, then E = (E⊥)⊥.

Proof. If e ∈ E and x ∈ E⊥, then (e, x) = 0 and so e ∈ (E⊥)⊥. Hence
E ⊂ (E⊥)⊥. Therefore E ⊂ (E⊥)⊥.

Now we know that H = E⊕ (E)⊥ because of the orthogonal projec-
tion Theorem.

On the other hand, y ∈ (E)⊥ implies that (y, x) = 0 for all x ∈ E
and this means that y ∈ E⊥. Similarly, y ∈ E⊥ implies that (y, x) = 0
for all x ∈ E and so we have (y, x)=0 for all x ∈ (E)⊥. We deduce
from this that (E)⊥ = E⊥.

Thus

H = E ⊕ E⊥ = E⊥ ⊕ (E⊥)⊥.

We conclude that E = (E⊥)⊥. �
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Remark 1.7. From the orthogonal projection Theorem we deduce that
for any F ⊂ H closed and for all x ∈ H, there exists a unique y =
PF (x) ∈ F such that (x−PF (x), z) = 0 for all z ∈ F , then x−PF (x) ∈
F⊥, where PF (x) denotes the projection on F at x.

Since G(A) ⊂ H×H, we have from Lemma 1.6, Lemma 1.5 and the
fact that V is unitary that

G(A) = {G(A)⊥}⊥ = {V 2(G(A)⊥)}⊥

= {V [V (G(A)⊥)]}⊥ = {V [G(A∗)]}⊥.
Thus,

(1.3) G(A) = {V [G(A∗)]}⊥

and

(1.4) G(A∗) = {V [G(A)]}⊥

This means that A∗ d.d. implies that A is closable.

Proof of (ii). If A∗ is d.d then we deduce from (1.4) and (1.3) that

{V [G(A∗)]}⊥ = G(A∗∗) = G(A).

Then A is closable and A = A∗∗.

Reciprocally, if D(A∗) were not dense in H, let ψ ∈ D(A∗)⊥, ψ 6= 0,

then (ψ, 0) ∈ G(A∗)⊥ which implies that (0, ψ) ∈ {V G(A∗)}⊥ = G(A)

but by Lemma 1.17 in [4] we have that G(A) is not the graph of any
linear operator, that is, A is not a closable operator. This implies (ii).

Proof of (iii). Let A be a closable operator, since A∗ is closed and (ii)
holds we deduce that

A∗ = A∗ = A∗∗∗ = (A∗∗)∗ = (A)∗.

This completes the proof of Theorem 1.4. �

Example 1.8. We consider once again the operator A defined by{
D(A) = C0([0, 1]) ⊂ L2([0, 1])→ L2([0, 1])

Af = φ f(1) where φ ∈ L2([0, 1]), φ 6= 0.

In Example 1.21 in [4] we saw that the operator A is not closable.
We shall show now that A∗ is not densely defined.

Let η ∈ H = L2([0, 1]), then

(Af, η) =

∫ 1

0

f(1)φ(x)η(x) dx
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Observe that the map

f ∈ C([0, 1]) ⊂ L2([0, 1]) 7→ f(1) ∈ C
is not continuous in the L2 topology. (To see this, take for instance

fn(x) = xn. It is easy to check that fn
L2

→ 0 and fn(1) = 1.) As
a consequence the only choice in order to have the map f 7→ (Af, η)
continuous is taking η ∈ L2([0, 1]) such that∫ 1

0

φ(x)η(x) dx = 0.

But this implies that {
D(A∗) = {φ}⊥

A∗η = 0.

In particular {φ}⊥ is not dense in L2([0, 1]).

1.1. Application. Differentiable operators are closable. Con-
sider a differentiable operator of order m,

P (x,D) =
∑
|α|≤m
α∈Nn

aα(x)Dα
x

where aα ∈ C∞(Ω) and Ω ⊆ Rn is an open set.
We can define Pmin by{

D(Pmin) = C∞0 (Ω) ⊆ L2(Ω)

Pminφ = P (x,D)φ.

Taking φ, ψ ∈ C∞0 (Ω), then

(Pminφ, ψ)0 = (
∑
|α|≤m

aα(x)∂αxφ, ψ)0

=

∫
Ω

∑
|α|≤m

aα(x)∂αxφ(x)ψ(x) dx

=
∑
|α|≤m

∫
Ω

aα(x)∂αxφ(x)ψ(x) dx

=
∑
|α|≤m

(−1)|α|
∫

Ω

φ(x)∂αx (aα(x)ψ(x)) dx.

This gives us

(Pminφ, ψ)0 = (φ, ζ)0
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where ζ =
∑
|α|≤m

(−1)|α|∂αx (aα ψ). Hence defining P ∗min asD(P ∗min) = C∞0 (Ω),

P ∗minψ =
∑
|α|≤m

(−1)|α|∂αx (aα ψ).

This implies that P ∗min is densely defined and from Theorem 1.4 it
follows that Pmin is a closable operator.

1.2. Symmetric and Self-Adjoint Operators.

Definition 1.9. Let A : D(A) ⊂ H→ H be a linear operator.

(i) We say that A is a symmetric operator if

(Aφ, ψ) = (φ,Aψ), for all φ, ψ ∈ D(A).

This is equivalent to say that A ⊆ A∗.

(ii) We say that A is a self-adoint operator if A = A∗.

Exercise 1.10. We say that a linear operator A is a maximal sym-
metric operator if

A ⊆ A∗

and

A ⊆ B, B ⊆ A∗ then A = B.

Prove that if A = A∗ then A is maximal symmetric.

Example 1.11. The operator H0 is symmetric, i.e. H0 ⊆ H∗0 . We
recall that {

D(H0) = H2(Rn) ⊂ L2(Rn)

H0f = −∆f

For all f, g ∈ C∞0 (Rn),

(H0f, g)0 = −
∫
Rn

∆f(x) g(x) dx

= −
n∑
j=1

∫
Rn

∂2
xj
f(x) g(x) dx

= −
n∑
j=1

∫
Rn

f(x) ∂2
xj
g(x) dx.
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Then
(H0f, g)0 = (f,H0g)0 ∀f, g ∈ S(Rn).

Now let f, g ∈ H2(Rn), there exist {fj}, {gj} ⊆ S(Rn) such that

fj
H2

→ f and gj
H2

→ g.

Notice that C∞0 (Rn)
H2

= L2(Rn) (prove it!). Thus for any j ∈ N it
holds that

(H0fj, gj)0 = (fj, H0gj)0

and making j →∞ it follows that

(H0f, g)0 = (f,H0g)0.

From the last identity we deduce that H2(R2) = D(H0) ⊆ D(H∗0 ) and
H0 ⊆ H∗0 .

Is H0 a self-adjoint operator?

We need the following definition

Definition 1.12. Let k ∈ N, 1 ≤ p ≤ ∞. Given a domain Ω ⊂ Rn,
the Sobolev space W k,p(Ω) is defined as,

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀|α| ≤ k}.
We equipped the Sobolev space with the norm

‖u‖Wk,p(Ω) =



( ∑
|α|≤k
‖Dαu‖pLp(Ω)

) 1
p
, 1 ≤ p <∞.

max
|α|≤k
‖Dαu‖Lp(Ω), p =∞.

It is usual to denote W k,2(Ω) by Hk(Ω) for it is a Hilbert space with
the norm W k,2(Ω).

Example 1.13. Consider the operators Aj =
1

i

d

dx
, j = 0, 1, 2 with

D(A0) = H1([−π, π]) ⊆ L2([−π, π]);

D(A1) = {φ ∈ H1([−π, π]) : φ(−π) = φ(π)};
D(A2) = {φ ∈ H1([−π, π]) : φ(−π) = φ(π) = 0}.

We will see that

(i) A1 and A2 are symmetric operators.
(ii) A0 is not a symmetric operator.
(iii) A2 = A∗0 (⊆ A0) this implies that A∗2 = A∗∗0 = A0 = A0 but

A0 ! A2 and so these operators are not self-adjoints.
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(iv) A∗1 = A1.

Proof of (i). Let φ, ψ ∈ D(A0) then

(A0 φ, ψ) = (
1

i
φ′, ψ)L2 =

1

i

∫ π

−π
φ′(x)ψ(x) dx

=
1

i
φ(x)ψ(x)

∣∣π
−π −

1

i

∫ π

−π
φ(x)ψ′(x) dx

=
1

i

[
φ(π)ψ(π)− φ(−π)ψ(−π)

]
− 1

i

∫ π

−π
φ(x)ψ′(x) dx

This holds for absolutely continuous functions. Then

(1.5) (A0 φ, ψ)=
1

i

[
φ(π)ψ(π)− φ(−π)ψ(−π)

]
+(φ,A0 ψ)L2

for all φ, ψ ∈ H1([−π, π]).
Therefore if φ, ψ ∈ D(Aj), j = 1, 2, we deduce that

(Aj φ, ψ)L2 = (φ,Ajψ)L2 j = 1, 2,

which implies that A1 ⊆ A∗1 and A2 ⊆ A∗2.

Proof of (ii). In addition, there exist φ, ψ ∈ H1([−π, π]) such that

φ(π)ψ(π) 6= φ(−π)ψ(−π)

it yields
(A0 φ, ψ)L2 6= (φ,A0 ψ)

which implies that A0 ( A∗0.

Proof of (iii). Now let φ ∈ D(A0) and ψ ∈ D(A2), then from (1.5) it
follows that

(A0φ, ψ) = (φ,A2ψ)

which implies that A2 ⊆ A∗0.
To prove that A∗0 ⊆ A2 it is enough to verify D(A∗0) ⊆ D(A2).

Claim. If η ∈ D(A∗0), then

(1.6)

∫ π

−π
A∗0η(y) dy = 0.

Indeed, since 1 ∈ H1([−π, π]), it follows that∫ π

−π
A∗0η(y) dy = (1, A∗0η) = (A0(1), η) = 0.

Let η ∈ D(A∗0), we define w(x) = i

∫ x

−π
A∗0η(y) dy. Then w(−π) =

w(π) = 0 and so w ∈ D(A2) (prove it!).
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Moreover,

A2w =
1

i
w′(x) = A∗0η(x)

But since A2 ⊆ A∗0 we have A∗0w = A2w.Thus

0 = (φ,A∗0(w − η))

= (A0φ,w − η) ∀φ ∈ D(A0).
(1.7)

This implies that w = η ∈ D(A2) and so D(A∗0) ⊆ D(A2).
To deduce the last affimation we have used that

C∞0 ([−π, π]) ⊆ (R(A0)) = L2([−π, π])

then taking u ∈ C∞0 ([−π, π]) we have that v(x) =

∫ x

−π
u(y) dy ∈ D(A0)

and A0v = u.

Proof of (iv). Notice that A2 = A∗0 ⊆ A1 ⊆ A0. Then A∗0 ⊆ A∗1 ⊆
A∗∗0 = A0 = A0. Thus for all ψ ∈ D(A∗1),

A∗1ψ =
1

i
ψ′.

From (ii) we already know that A1 ⊆ A∗1, we need to show now that
D(A∗1) ⊆ D(A1).

By the identity (1.5) it follows that for all φ ∈ D(A1), and for all
ψ ∈ D(A∗1),

(A1φ, ψ)L2 = (φ,A∗1ψ)

since A∗1 ⊆ A0 and

φ(π)ψ(π)− φ(−π)ψ(−π) = φ(π)(ψ(π)− ψ(−π)).

This implies that

φ(π)(ψ(π)− ψ(−π)) = 0.

Choosing φ ≡ 1 ∈ D(A1) it follows that ψ(π) = ψ(−π), that is,
ψ ∈ D(A1) that concludes the proof.

Remark 1.14. From this example we can see that it is not easy at
all to establish when a linear symmetric operator is self-adjoint just
by using the definition. In what follows we will establish a criteria to
determine when a symmetric operator is self-adjoint.
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1.3. Basic Criteria. The next result is an effective tool to determine
when a symmetric operator is sefl-adjoint.

Theorem 1.15. Let A : D(A) ⊂ H → H a linear operator d.d. such
that A ⊆ A∗, then the following assertions are equivalent:

(i) A = A∗;
(ii) A is closed and Ker(A∗ ± i) = {0};
(iii) R(A± i) = H.

Remarks 1.16.

(1) The linear operator A does have any special feature, i.e. the
criteria holds for ±λi, λ > 0.

(2) To prove (iii) =⇒ (ii) it is necessary to have R(A + i) = H

and R(A− i) = H.

Proof.
(i) =⇒ (ii). If A = A∗, then A is closed.

Let now φ ∈ D(A∗) = D(A) such that A∗φ = i φ. Then

i‖φ‖2 = (iφ, φ) = (A∗φ, φ) = (Aφ, φ)

= (φ,A∗φ) = (φ, iφ) = −i‖φ‖2.

This implies that φ = 0, that is, Ker(A∗ − i) = {0}.
Similarly, we will have Ker(A∗ + i) = {0}.

(ii) =⇒ (iii). We will follow the following strategy:

(1) We first prove that R(A± i)⊥ = {0}.
(2) Then we show that R(A± i) is closed.

Thus we can conclude that R(A± i) = H. The latter follows from the
orthogonal projection Theorem.

Affirmation. Let B : D(B) ⊂ H→ H be a linear operator d.d., then

R(B)⊥ = KerB∗.

Proof of the Affirmation. (⊆) Let φ ∈ R(B)⊥, then for all ψ ∈ D(B)
we have that (Bψ, φ) = 0. It follows that φ ∈ D(B∗) and B∗φ = 0
which implies that φ ∈ KerB∗.

(⊇) Let φ ∈ KerB∗ then for all ψ ∈ D(B)

(Bψ, φ) = (ψ,B∗φ) = 0

we conclude that φ ∈ R(B)⊥. This completes the proof of the affirma-
tion. �
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Now we suppose (ii), we deduce from the affirmation that

R(A± i)⊥ = Ker(A± i)∗ = Ker(A∗ ∓ i) = {0}
where we use property (vii) in page 2. The identity above gives us (1).

Next we shall show (2), i.e. R(A± i) is closed.

Let {fj} ⊂ R(A± i) such that fj
H→ f . For all j there exist φj such

that fj = (A± i)φj.
On the other hand, for all φ ∈ D(A) we have that

‖(A± i)φ‖2 =
(
(A± i)φ, (A± i)φ

)
= (Aφ,Aφ)± i(φ,Aφ)∓ i(φ,Aφ)− i2(φ, φ).

Using that A ⊆ A∗ we conclude that

(1.8) ‖(A± i)φ‖2 = ‖Aφ‖2 + ‖φ‖2.

From (1.8) we have that

(1.9) ‖fj − fl‖2 = ‖A(φj − φl)‖2 + ‖φj − φl‖2 ∀j, l.
Then we deduce from (1.9) that‖φj − φl‖ ≤ ‖fj − fl‖ →j,l→∞ 0,

‖A(φj − φl)‖ ≤ ‖fj − fl‖ →
j,l→∞

0.

Thus {φj} and {Aφj} are Cauchy sequences in H. Since H is complete
it follows that there exist φ, ψ ∈ H such that{

φj
H→ φ

Aφj
H→ ψ

as j →∞.
Since A is closed it follows that φ ∈ D(A) and ψ = Aφ.
Thus

(A± i)φj →
j→∞

(A± i)φ ∈ R(A± i).

Therefore R(A± i) is closed.

(iii) =⇒ (i). We already know that A ⊆ A∗. Left to show that

D(A∗) ⊆ D(A).
Let f ∈ D(A∗), by hypothesis R(A − i) = H. Hence there exists

φ ∈ D(A) such that

(A∗ − i)f = (A− i)φ =
A⊆A∗

(A∗ − i)φ.

From this we conclude that

f − φ ∈ Ker(A∗ − i) = Ker(A+ i)∗ = R(A+ i)⊥ = {0}
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Thus f = φ ∈ D(A). Above we used the affirmation and the fact that
R(A+ i) = H. �

Corollary 1.17 (Spectrum of a self-adjoint operator). If A = A∗, then

σ(A) ⊆ R.

Proof. The basic criteria implies that for all λ > 0,{
Ker(A± iλ) = {0}
R(A± iλ) = H.

From this we conclude that ±iλ ∈ ρ(A) for all λ > 0. If we denote
R∗ = R\{0}, then iR∗ ⊆ ρ(A).

Moreover, for all η > 0 we obtain

(A+ η)∗ = A∗ + η = A∗ + η.

From this it follows then that{
Ker(A+ η ± iλ) = {0},
R(A+ η ± iλ) = H.

Hence η ± iλ ∈ ρ(A), for all η ∈ R and λ > 0. Therefore C\R ⊂ ρ(A).
In other words, σ(A) ⊂ R. �

Definition 1.18. A linear symmetric operator (A ⊆ A∗) is called an
essentially self-adjoint operator, if and only if, A is self-adjoint.
That is, A

∗
= A∗ = A.

We can state another version of the Basic Criteria with the same
proof as follows.

Theorem 1.19. Let A be a symmetric operator (A ⊆ A∗), then the
following statements are equivalent.

(i) A = A∗ (A is essentially self-adjoint);
(ii) Ker(A∗ ± i) = {0};
(iii) (A∗ ± i) are dense in H.

Example 1.20. The operator H0min
is essentially self-adjoint (prove

it!).
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