Teoria Espectral

1. Adjoint. Symmetric and Self-Adjoint Operators

We assume that \mathcal{H} is a Hilbert space. In this section we will define self-adjoint unbounded operators and study its properties.

Definition 1.1. Let $A: D(A) \subset \mathcal{H} \to \mathcal{H}$ be a linear operator densely defined (d.d.) i.e. $\overline{D(A)} = \mathcal{H}$.

We define the adjoint A^* of the operator A by

$$\begin{cases} D(A^*) = \{ \eta \in \mathcal{H} : \exists \psi \in \mathcal{H} \text{ such that } (A\phi, \eta) = (\phi, \psi) \ \forall \phi \in D(A) \}, \\ A^*\eta = \psi. \end{cases}$$

Remarks 1.2.

(1) A^* is well defined.

If there exists $\tilde{\psi} \in \mathcal{H}$ such that

$$(A\phi, \eta) = (\phi, \psi) = (\phi, \tilde{\psi})$$

Then

$$(\phi, \psi - \tilde{\psi}) = 0 \text{ for all } \phi \in D(A)$$

which implies that $\psi \equiv \tilde{\psi}$ since D(A) is dense in \mathcal{H} .

- (2) We have that
- $(1.1) \quad D(A^*) = \{ \eta \in \mathcal{H} : L\eta : \phi \in D(A) \mapsto (A\phi, \eta) \text{ is continuous} \}.$

Indeed, we can extend $\overline{L\eta}: \overline{D(A)} = \mathcal{H} \to \mathbb{C}$ continuous. i.e. $L\eta \in \mathcal{H}^*$ implies there exists $\psi \in \mathcal{H}$ such that

$$\overline{L\eta}(\phi) = (\phi, \psi) \ \forall \phi \in \mathcal{H}$$

by the Riesz Theorem.

In particular, it holds that

$$(A\phi, \eta) = (\phi, \psi) \quad \forall \phi \in D(A).$$

- (3) It holds that
- $(1.2) (A\phi, \eta) = (\phi, A^*\eta), \quad \forall \phi \in D(A), \ \forall \eta \in D(A^*).$

Verify that $A^*: D(A^*) \subset \mathcal{H} \to \mathcal{H}$ defines a linear operator.

Exercise 1.3. If $A \in \mathcal{B}(\mathcal{H})$, show that $A^* \in \mathcal{B}(\mathcal{H})$ and it holds that

$$(Af, g) = (f, A^*g) \quad \forall f, g \in \mathcal{H}$$

and

$$||A|| = ||A^*||.$$

<u>Properties</u>. Let $A:D(A)\subseteq\mathcal{H}\to\mathcal{H}$ and $B:D(B)\subseteq\mathcal{H}\to\mathcal{H}$ be two linear operators d.d. Then it holds that

- (i) A^* is closed.
- (ii) $(\lambda A)^* = \bar{\lambda} A^*$ for all $\lambda \in \mathbb{C}$.
- (iii) $A \subseteq B$ implies that $B^* \subseteq A^*$.
- (iv) $A^* + B^* \subseteq (A + B)^*$.
- (v) $B^*A^* \subseteq (AB)^*$.
- (vi) $A \subseteq A^{**}$ where $A^{**} = (A^*)^*$.
- (vii) $(A + \lambda)^* = A^* + \bar{\lambda}$.

Theorem 1.4. Let $A:D(A)\subseteq\mathcal{H}\to\mathcal{H}$ a linear operator d.d., then it holds that

- (i) A^* is closed;
- (ii) A is closable if and only if A^* is d.d. in this case $\bar{A} = A^{**}$;
- (iii) If A is closable, then $(\bar{A})^* = A^*$.

Proof. To prove this theorem we will need some definitions and lemmas.

We start by considering the Hilbert space $\mathcal{H} \times \mathcal{H}$ equipped with the inner product

$$\langle (\phi_1, \psi_1), (\phi_2, \psi_2) \rangle = (\phi_1, \phi_2)_{\mathcal{H}} + (\psi_1, \psi_2)_{\mathcal{H}}.$$

We define the operator

$$V: \mathcal{H} \times \mathcal{H} \to \mathcal{H} \times \mathcal{H}$$
$$(\phi, \psi) \mapsto V(\phi, \psi) = (-\psi, \phi).$$

Notice that V is a unitary operator. In fact,

$$\langle V(\phi_1, \psi_1), V(\phi_2, \psi_2) \rangle = \langle (-\psi_1, \phi_1), (-\psi_2, \phi_2) \rangle$$

= $(\psi_1, \psi_2) + (\phi_1, \phi_2)$
= $\langle (\phi_1, \psi_1), (\phi_2, \psi_2) \rangle$.

Lemma 1.5. If $V: \mathcal{H} \to \mathcal{H}$ is a unitary operator, then

$$V(E^{\perp}) = V(E)^{\perp}, \quad \forall E \subseteq \mathcal{H},$$

where E^{\perp} denotes the orthogonal set to E which is defined as

$$E^\perp=\{\phi\in\mathcal{H}: (\phi,\eta)=0,\ \forall\eta\in E\}.$$

Proof. Let $x \in E^{\perp}$ and $y = V(e) \in V(E)$, then

$$\langle V(x), y \rangle = \langle V(x), V(e) \rangle = \langle x, e \rangle = 0.$$

Thus $V(x) \in V(E)^{\perp}$ and so $V(E^{\perp}) \subset V(E)^{\perp}$.

Reciprocally, let $y \in V(E)^{\perp}$, since V is a bijection it implies there exists a unique $x \in \mathcal{H}$ such that y = V(x).

If for all $e \in E$,

$$\langle x, e \rangle = \langle V(x), V(e) \rangle = 0$$

this implies that $x \in E^{\perp}$ and so $y \in V(E^{\perp})$. Thus $V(E)^{\perp} \subset V(E^{\perp})$. This concludes the proof of the lemma.

Proof of (i) We denote by

$$G(A) = \{(x, Ax) : x \in D(A)\} \subset \mathcal{H} \times \mathcal{H}.$$

the graph of the operator A.

We can see that

$$(\phi, \eta) \in V(G(A))^{\perp} \iff \langle (\phi, \eta), (-A\psi, \psi) \rangle = 0 \quad \forall \psi \in D(A)$$

$$\iff -(\phi, A\psi) + (\eta, \psi) = 0 \quad \forall \psi \in D(A)$$

$$\iff (\phi, A\psi) = (\eta, \psi) \quad \forall \psi \in D(A)$$

$$\iff (A\psi, \phi) = (\psi, \eta) \quad \forall \psi \in D(A)$$

$$\iff (\phi, \eta) \in G(A^*).$$

This shows that $G(A^*) = \{V(G(A))\}^{\perp}$ is closed. (since the orthogonal of a set is always a closed subspace). Thus A^* is a closed operator.

Lemma 1.6. If $E \subseteq \mathcal{H}$, then $\overline{E} = (E^{\perp})^{\perp}$.

Proof. If $e \in E$ and $x \in E^{\perp}$, then (e, x) = 0 and so $e \in (E^{\perp})^{\perp}$. Hence $E \subset (E^{\perp})^{\perp}$. Therefore $\overline{E} \subset (E^{\perp})^{\perp}$.

Now we know that $\mathcal{H} = \overline{E} \oplus (\overline{E})^{\perp}$ because of the orthogonal projection Theorem.

On the other hand, $y \in (\overline{E})^{\perp}$ implies that (y,x) = 0 for all $x \in \overline{E}$ and this means that $y \in E^{\perp}$. Similarly, $y \in E^{\perp}$ implies that (y,x) = 0 for all $x \in E$ and so we have (y,x)=0 for all $x \in (\overline{E})^{\perp}$. We deduce from this that $(\overline{E})^{\perp} = E^{\perp}$.

Thus

$$\mathcal{H} = \overline{E} \oplus E^{\perp} = E^{\perp} \oplus (E^{\perp})^{\perp}.$$

We conclude that $\overline{E} = (E^{\perp})^{\perp}$.

Remark 1.7. From the orthogonal projection Theorem we deduce that for any $F \subset \mathcal{H}$ closed and for all $x \in \mathcal{H}$, there exists a unique $y = \mathcal{P}_F(x) \in F$ such that $(x - \mathcal{P}_F(x), z) = 0$ for all $z \in F$, then $x - \mathcal{P}_F(x) \in F^{\perp}$, where $\mathcal{P}_F(x)$ denotes the projection on F at x.

Since $G(A) \subset \mathcal{H} \times \mathcal{H}$, we have from Lemma 1.6, Lemma 1.5 and the fact that V is unitary that

$$\begin{split} \overline{G(A)} &= \{G(A)^{\perp}\}^{\perp} = \{V^2(G(A)^{\perp})\}^{\perp} \\ &= \{V[V(G(A)^{\perp})]\}^{\perp} = \{V[G(A^*)]\}^{\perp}. \end{split}$$

Thus,

$$(1.3) \overline{G(A)} = \{V[G(A^*)]\}^{\perp}$$

and

$$(1.4) G(A^*) = \{V[G(A)]\}^{\perp}$$

This means that A^* d.d. implies that A is closable.

Proof of (ii). If A^* is d.d then we deduce from (1.4) and (1.3) that

$$\{V[G(A^*)]\}^{\perp} = G(A^{**}) = \overline{G(A)}.$$

Then A is closable and $\overline{A} = A^{**}$.

Reciprocally, if $D(A^*)$ were not dense in \mathcal{H} , let $\psi \in D(A^*)^{\perp}$, $\psi \neq 0$, then $(\psi, 0) \in G(A^*)^{\perp}$ which implies that $\underline{(0, \psi)} \in \{VG(A^*)\}^{\perp} = \overline{G(A)}$ but by Lemma 1.17 in [4] we have that $\overline{G(A)}$ is not the graph of any linear operator, that is, A is not a closable operator. This implies (ii).

<u>Proof of (iii)</u>. Let A be a closable operator, since A^* is closed and (ii) holds we deduce that

$$A^* = \overline{A^*} = A^{***} = (A^{**})^* = (\overline{A})^*.$$

This completes the proof of Theorem 1.4.

Example 1.8. We consider once again the operator A defined by

$$\begin{cases} D(A) = C^0([0,1]) \subset L^2([0,1]) \to L^2([0,1]) \\ Af = \phi f(1) \quad where \ \phi \in L^2([0,1]), \ \phi \neq 0. \end{cases}$$

In Example 1.21 in [4] we saw that the operator A is not closable. We shall show now that A^* is not densely defined.

Let
$$\eta \in \mathcal{H} = L^2([0,1])$$
, then

$$(Af, \eta) = \int_0^1 f(1)\phi(x)\overline{\eta}(x) dx$$

Observe that the map

$$f \in C([0,1]) \subset L^2([0,1]) \mapsto f(1) \in \mathbb{C}$$

is not continuous in the L^2 topology. (To see this, take for instance $f_n(x) = x^n$. It is easy to check that $f_n \stackrel{L^2}{\to} 0$ and $f_n(1) = 1$.) As a consequence the only choice in order to have the map $f \mapsto (Af, \eta)$ continuous is taking $\eta \in L^2([0,1])$ such that

$$\int_0^1 \phi(x)\overline{\eta}(x) \, dx = 0.$$

But this implies that

$$\begin{cases} D(A^*) = \{\phi\}^{\perp} \\ A^* \eta = 0. \end{cases}$$

In particular $\{\phi\}^{\perp}$ is not dense in $L^2([0,1])$.

1.1. Application. Differentiable operators are closable. Consider a differentiable operator of order m,

$$P(x,D) = \sum_{\substack{|\alpha| \le m \\ \alpha \in \mathbb{N}^n}} a_{\alpha}(x) D_x^{\alpha}$$

where $a_{\alpha} \in C^{\infty}(\Omega)$ and $\Omega \subseteq \mathbb{R}^n$ is an open set.

We can define P_{\min} by

$$\begin{cases} D(P_{\min}) = C_0^{\infty}(\Omega) \subseteq L^2(\Omega) \\ P_{\min}\phi = P(x, D)\phi. \end{cases}$$

Taking $\phi, \psi \in C_0^{\infty}(\Omega)$, then

$$(P_{\min}\phi, \psi)_0 = (\sum_{|\alpha| \le m} a_{\alpha}(x) \partial_x^{\alpha} \phi, \psi)_0$$

$$= \int_{\Omega} \sum_{|\alpha| \le m} a_{\alpha}(x) \partial_x^{\alpha} \phi(x) \overline{\psi(x)} dx$$

$$= \sum_{|\alpha| \le m} \int_{\Omega} a_{\alpha}(x) \partial_x^{\alpha} \phi(x) \overline{\psi(x)} dx$$

$$= \sum_{|\alpha| \le m} (-1)^{|\alpha|} \int_{\Omega} \phi(x) \overline{\partial_x^{\alpha}(a_{\alpha}(x)\psi(x))} dx.$$

This gives us

$$(P_{\min}\phi,\psi)_0=(\phi,\zeta)_0$$

where $\zeta = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \partial_x^{\alpha} (\overline{a_{\alpha}} \psi)$. Hence defining P_{\min}^* as

$$\begin{cases} D(P_{\min}^*) = C_0^{\infty}(\Omega), \\ P_{\min}^* \psi = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \partial_x^{\alpha}(\overline{a_{\alpha}} \psi). \end{cases}$$

This implies that P_{\min}^* is densely defined and from Theorem 1.4 it follows that P_{\min} is a closable operator.

1.2. Symmetric and Self-Adjoint Operators.

Definition 1.9. Let $A:D(A)\subset\mathcal{H}\to\mathcal{H}$ be a linear operator.

(i) We say that A is a symmetric operator if

$$(A\phi, \psi) = (\phi, A\psi), \text{ for all } \phi, \psi \in D(A).$$

This is equivalent to say that $A \subseteq A^*$.

(ii) We say that A is a self-adoint operator if $A = A^*$.

Exercise 1.10. We say that a linear operator A is a maximal symmetric operator if

$$A \subseteq A^*$$

and

$$A \subseteq B$$
, $B \subseteq A^*$ then $A = B$.

Prove that if $A = A^*$ then A is maximal symmetric.

Example 1.11. The operator H_0 is symmetric, i.e. $H_0 \subseteq H_0^*$. We recall that

$$\begin{cases} D(H_0) = H^2(\mathbb{R}^n) \subset L^2(\mathbb{R}^n) \\ H_0 f = -\Delta f \end{cases}$$

For all $f, g \in C_0^{\infty}(\mathbb{R}^n)$,

$$(H_0 f, g)_0 = -\int_{\mathbb{R}^n} \Delta f(x) \, \overline{g(x)} \, dx$$
$$= -\sum_{j=1}^n \int_{\mathbb{R}^n} \partial_{x_j}^2 f(x) \, \overline{g(x)} \, dx$$
$$= -\sum_{j=1}^n \int_{\mathbb{R}^n} f(x) \, \partial_{x_j}^2 \overline{g(x)} \, dx.$$

Then

$$(H_0f, g)_0 = (f, H_0g)_0 \quad \forall f, g \in \mathcal{S}(\mathbb{R}^n).$$

Now let $f, g \in H^2(\mathbb{R}^n)$, there exist $\{f_j\}, \{g_j\} \subseteq S(\mathbb{R}^n)$ such that $f_j \stackrel{H^2}{\to} f$ and $g_j \stackrel{H^2}{\to} g$.

Notice that $\overline{C_0^{\infty}(\mathbb{R}^n)}^{H^2} = L^2(\mathbb{R}^n)$ (prove it!). Thus for any $j \in \mathbb{N}$ it holds that

$$(H_0f_j, g_j)_0 = (f_j, H_0g_j)_0$$

and making $j \to \infty$ it follows that

$$(H_0f, g)_0 = (f, H_0g)_0.$$

From the last identity we deduce that $H^2(\mathbb{R}^2) = D(H_0) \subseteq D(H_0^*)$ and $H_0 \subseteq H_0^*$.

Is H_0 a self-adjoint operator?

We need the following definition

Definition 1.12. Let $k \in \mathbb{N}$, $1 \leq p \leq \infty$. Given a domain $\Omega \subset \mathbb{R}^n$, the **Sobolev space** $W^{k,p}(\Omega)$ is defined as,

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : D^\alpha u \in L^p(\Omega), \ \forall |\alpha| \le k \}.$$

We equipped the Sobolev space with the norm

$$||u||_{W^{k,p}(\Omega)} = \begin{cases} \left(\sum_{|\alpha| \le k} ||D^{\alpha}u||_{L^p(\Omega)}^p\right)^{\frac{1}{p}}, & 1 \le p < \infty. \\ \max_{|\alpha| \le k} ||D^{\alpha}u||_{L^p(\Omega)}, & p = \infty. \end{cases}$$

It is usual to denote $W^{k,2}(\Omega)$ by $H^k(\Omega)$ for it is a Hilbert space with the norm $W^{k,2}(\Omega)$.

Example 1.13. Consider the operators $A_j = \frac{1}{i} \frac{d}{dx}$, j = 0, 1, 2 with

$$D(A_0) = H^1([-\pi, \pi]) \subseteq L^2([-\pi, \pi]);$$

$$D(A_1) = \{ \phi \in H^1([-\pi, \pi]) : \phi(-\pi) = \phi(\pi) \};$$

$$D(A_2) = \{ \phi \in H^1([-\pi, \pi]) : \phi(-\pi) = \phi(\pi) = 0 \}.$$

We will see that

- (i) A_1 and A_2 are symmetric operators.
- (ii) A_0 is not a symmetric operator.
- (iii) $A_2 = A_0^* \ (\subseteq A_0)$ this implies that $A_2^* = A_0^{**} = \overline{A_0} = A_0$ but $A_0 \supseteq A_2$ and so these operators are not self-adjoints.

(iv)
$$A_1^* = A_1$$
.

Proof of (i). Let $\phi, \psi \in D(A_0)$ then

$$(A_0 \phi, \psi) = (\frac{1}{i} \phi', \psi)_{L^2} = \frac{1}{i} \int_{-\pi}^{\pi} \phi'(x) \, \overline{\psi(x)} \, dx$$
$$= \frac{1}{i} \phi(x) \, \overline{\psi(x)} \, \Big|_{-\pi}^{\pi} - \frac{1}{i} \int_{-\pi}^{\pi} \phi(x) \, \overline{\psi'(x)} \, dx$$
$$= \frac{1}{i} \Big[\phi(\pi) \, \overline{\psi}(\pi) - \phi(-\pi) \, \overline{\psi}(-\pi) \Big] - \frac{1}{i} \int_{-\pi}^{\pi} \phi(x) \, \overline{\psi'(x)} \, dx$$

This holds for absolutely continuous functions. Then

(1.5)
$$(A_0 \phi, \psi) = \frac{1}{i} \left[\phi(\pi) \, \overline{\psi}(\pi) - \phi(-\pi) \, \overline{\psi}(-\pi) \right] + (\phi, A_0 \, \psi)_{L^2}$$

for all $\phi, \psi \in H^1([-\pi, \pi])$.

Therefore if $\phi, \psi \in D(A_i), j = 1, 2$, we deduce that

$$(A_j \phi, \psi)_{L^2} = (\phi, A_j \psi)_{L^2} \quad j = 1, 2,$$

which implies that $A_1 \subseteq A_1^*$ and $A_2 \subseteq A_2^*$.

Proof of (ii). In addition, there exist $\phi, \psi \in H^1([-\pi, \pi])$ such that

$$\phi(\pi) \, \overline{\psi}(\pi) \neq \phi(-\pi) \, \overline{\psi}(-\pi)$$

it yields

$$(A_0 \phi, \psi)_{L^2} \neq (\phi, A_0 \psi)$$

which implies that $A_0 \subsetneq A_0^*$.

<u>Proof of (iii)</u>. Now let $\phi \in D(A_0)$ and $\psi \in D(A_2)$, then from (1.5) it follows that

$$(A_0\phi,\psi)=(\phi,A_2\psi)$$

which implies that $A_2 \subseteq A_0^*$.

To prove that $A_0^* \subseteq A_2$ it is enough to verify $D(A_0^*) \subseteq D(A_2)$.

Claim. If $\eta \in D(A_0^*)$, then

(1.6)
$$\int_{-\pi}^{\pi} A_0^* \eta(y) \, dy = 0.$$

Indeed, since $1 \in H^1([-\pi, \pi])$, it follows that

$$\int_{-\pi}^{\pi} \overline{A_0^* \eta(y)} \, dy = (1, A_0^* \eta) = (A_0(1), \eta) = 0.$$

Let $\eta \in D(A_0^*)$, we define $w(x) = i \int_{-\pi}^x A_0^* \eta(y) dy$. Then $w(-\pi) = w(\pi) = 0$ and so $w \in D(A_2)$ (prove it!).

Moreover,

$$A_2 w = \frac{1}{i} w'(x) = A_0^* \eta(x)$$

But since $A_2 \subseteq A_0^*$ we have $A_0^*w = A_2w$. Thus

(1.7)
$$0 = (\phi, A_0^*(w - \eta)) \\ = (A_0\phi, w - \eta) \quad \forall \phi \in D(A_0).$$

This implies that $w = \eta \in D(A_2)$ and so $D(A_0^*) \subseteq D(A_2)$. To deduce the last affimation we have used that

$$C_0^{\infty}([-\pi,\pi]) \subseteq \overline{(R(A_0))} = L^2([-\pi,\pi])$$

then taking $u \in C_0^{\infty}([-\pi, \pi])$ we have that $v(x) = \int_{-\pi}^x u(y) dy \in D(A_0)$ and $A_0v = u$.

 $\frac{Proof\ of\ (iv)}{A_0^{**} = \overline{A_0}} = A_0. \ \ Notice\ that\ A_2 = A_0^* \subseteq A_1 \subseteq A_0. \ \ Then\ A_0^* \subseteq A_1^* \subseteq A_0^*.$ Thus for all $\psi \in D(A_1^*)$,

$$A_1^*\psi = \frac{1}{i}\psi'.$$

From (ii) we already know that $A_1 \subseteq A_1^*$, we need to show now that $D(A_1^*) \subseteq D(A_1)$.

By the identity (1.5) it follows that for all $\phi \in D(A_1)$, and for all $\psi \in D(A_1^*)$,

$$(A_1\phi, \psi)_{L^2} = (\phi, A_1^*\psi)$$

since $A_1^* \subseteq A_0$ and

$$\phi(\pi)\overline{\psi}(\pi) - \phi(-\pi)\overline{\psi}(-\pi) = \phi(\pi)(\overline{\psi}(\pi) - \overline{\psi}(-\pi)).$$

This implies that

$$\phi(\pi)(\overline{\psi}(\pi) - \overline{\psi}(-\pi)) = 0.$$

Choosing $\phi \equiv 1 \in D(A_1)$ it follows that $\psi(\pi) = \psi(-\pi)$, that is, $\psi \in D(A_1)$ that concludes the proof.

Remark 1.14. From this example we can see that it is not easy at all to establish when a linear symmetric operator is self-adjoint just by using the definition. In what follows we will establish a criteria to determine when a symmetric operator is self-adjoint.

1.3. **Basic Criteria.** The next result is an effective tool to determine when a symmetric operator is sefl-adjoint.

Theorem 1.15. Let $A: D(A) \subset \mathcal{H} \to \mathcal{H}$ a linear operator d.d. such that $A \subseteq A^*$, then the following assertions are equivalent:

- (i) $A = A^*$;
- (ii) A is closed and $Ker(A^* \pm i) = \{0\};$
- (iii) $R(A \pm i) = \mathcal{H}$.

Remarks 1.16.

- (1) The linear operator A does have any special feature, i.e. the criteria holds for $\pm \lambda i$, $\lambda > 0$.
- (2) To prove (iii) \Longrightarrow (ii) it is necessary to have $R(A+i) = \mathcal{H}$ and $R(A-i) = \mathcal{H}$.

Proof.

(i) \implies (ii). If $A = A^*$, then A is closed.

Let now $\phi \in D(A^*) = D(A)$ such that $A^*\phi = i \phi$. Then

$$i\|\phi\|^2 = (i\phi, \phi) = (A^*\phi, \phi) = (A\phi, \phi)$$

= $(\phi, A^*\phi) = (\phi, i\phi) = -i\|\phi\|^2$.

This implies that $\phi = 0$, that is, $Ker(A^* - i) = \{0\}$.

Similarly, we will have $Ker(A^* + i) = \{0\}.$

- $(ii) \implies (iii)$. We will follow the following strategy:
 - (1) We first prove that $R(A \pm i)^{\perp} = \{0\}.$
 - (2) Then we show that $R(A \pm i)$ is closed.

Thus we can conclude that $R(A \pm i) = \mathcal{H}$. The latter follows from the orthogonal projection Theorem.

Affirmation. Let $B: D(B) \subset \mathcal{H} \to \mathcal{H}$ be a linear operator d.d., then $R(B)^{\perp} = KerB^*$.

Proof of the Affirmation. (\subseteq) Let $\phi \in R(B)^{\perp}$, then for all $\psi \in D(B)$ we have that $(B\psi, \phi) = 0$. It follows that $\phi \in D(B^*)$ and $B^*\phi = 0$ which implies that $\phi \in KerB^*$.

 (\supseteq) Let $\phi \in KerB^*$ then for all $\psi \in D(B)$

$$(B\psi,\phi) = (\psi, B^*\phi) = 0$$

we conclude that $\phi \in R(B)^{\perp}$. This completes the proof of the affirmation.

Now we suppose (ii), we deduce from the affirmation that

$$R(A \pm i)^{\perp} = Ker(A \pm i)^* = Ker(A^* \mp i) = \{0\}$$

where we use property (vii) in page 2. The identity above gives us (1).

Next we shall show (2), i.e. $R(A \pm i)$ is closed.

Let $\{f_j\} \subset R(A \pm i)$ such that $f_j \stackrel{\mathcal{H}}{\to} f$. For all j there exist ϕ_j such that $f_j = (A \pm i)\phi_j$.

On the other hand, for all $\phi \in D(A)$ we have that

$$||(A \pm i)\phi||^2 = ((A \pm i)\phi, (A \pm i)\phi)$$
$$= (A\phi, A\phi) \pm i(\phi, A\phi) \mp i(\phi, A\phi) - i^2(\phi, \phi).$$

Using that $A \subseteq A^*$ we conclude that

(1.8)
$$||(A \pm i)\phi||^2 = ||A\phi||^2 + ||\phi||^2.$$

From (1.8) we have that

(1.9)
$$||f_j - f_l||^2 = ||A(\phi_j - \phi_l)||^2 + ||\phi_j - \phi_l||^2 \quad \forall j, l.$$

Then we deduce from (1.9) that

$$\begin{cases} \|\phi_j - \phi_l\| \le \|f_j - f_l\| \underset{j,l \to \infty}{\to} 0, \\ \|A(\phi_j - \phi_l)\| \le \|f_j - f_l\| \underset{j,l \to \infty}{\to} 0. \end{cases}$$

Thus $\{\phi_j\}$ and $\{A\phi_j\}$ are Cauchy sequences in \mathcal{H} . Since \mathcal{H} is complete it follows that there exist $\phi, \psi \in \mathcal{H}$ such that

$$\begin{cases} \phi_j \stackrel{\mathcal{H}}{\to} \phi \\ A\phi_j \stackrel{\mathcal{H}}{\to} \psi \end{cases}$$

as $j \to \infty$.

Since A is closed it follows that $\phi \in D(A)$ and $\psi = A\phi$.

Thus

$$(A \pm i)\phi_j \underset{i \to \infty}{\longrightarrow} (A \pm i)\phi \in R(A \pm i).$$

Therefore $R(A \pm i)$ is closed.

 $(iii) \implies (i)$. We already know that $A \subseteq A^*$. Left to show that $\overline{D(A^*)} \subseteq \overline{D(A)}$.

Let $f \in D(A^*)$, by hypothesis $R(A - i) = \mathcal{H}$. Hence there exists $\phi \in D(A)$ such that

$$(A^* - i)f = (A - i)\phi = A \subset A^* = A^* - i\phi.$$

From this we conclude that

$$f - \phi \in Ker(A^* - i) = Ker(A + i)^* = R(A + i)^{\perp} = \{0\}$$

Thus $f = \phi \in D(A)$. Above we used the affirmation and the fact that $R(A+i) = \mathcal{H}$.

Corollary 1.17 (Spectrum of a self-adjoint operator). If $A=A^*$, then

$$\sigma(A) \subseteq \mathbb{R}$$
.

Proof. The basic criteria implies that for all $\lambda > 0$,

$$\begin{cases} Ker(A \pm i\lambda) = \{0\} \\ R(A \pm i\lambda) = \mathcal{H}. \end{cases}$$

From this we conclude that $\pm i\lambda \in \rho(A)$ for all $\lambda > 0$. If we denote $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, then $i\mathbb{R}^* \subseteq \rho(A)$.

Moreover, for all $\eta > 0$ we obtain

$$(A+\eta)^* = A^* + \overline{\eta} = A^* + \eta.$$

From this it follows then that

$$\begin{cases} Ker(A + \eta \pm i\lambda) = \{0\}, \\ R(A + \eta \pm i\lambda) = \mathcal{H}. \end{cases}$$

Hence $\eta \pm i\lambda \in \rho(A)$, for all $\eta \in \mathbb{R}$ and $\lambda > 0$. Therefore $\mathbb{C}\backslash\mathbb{R} \subset \rho(A)$. In other words, $\sigma(A) \subset \mathbb{R}$.

Definition 1.18. A linear symmetric operator $(A \subseteq A^*)$ is called an **essentially self-adjoint** operator, if and only if, \overline{A} is self-adjoint. That is, $\overline{A}^* = A^* = \overline{A}$.

We can state another version of the Basic Criteria with the same proof as follows.

Theorem 1.19. Let A be a symmetric operator $(A \subseteq A^*)$, then the following statements are equivalent.

- (i) $\overline{A} = A^*$ (A is essentially self-adjoint);
- (ii) $Ker(A^* \pm i) = \{0\};$
- (iii) $(A^* \pm i)$ are dense in \mathcal{H} .

Example 1.20. The operator $H_{0_{\min}}$ is essentially self-adjoint (prove it!).

REFERENCES

- [1] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Volumes 1, 2 [2] E. Hille, Methods in Classical and Functional Analysis
- [3] T. Kato, Perturbation Theory
- [4] Notes on Unbounded Operators.