Teoria Espectral

1. Adjoint. Symmetric and Self-Adjoint Operators

We assume that \mathcal{H} is a Hilbert space. In this section we will define self-adjoint unbounded operators and study its properties.

Definition 1.1. Let $A: D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator densely defined (d.d.) i.e. $\overline{D(A)}=\mathcal{H}$.

We define the adjoint A^{*} of the operator A by $\left\{\begin{array}{l}D\left(A^{*}\right)=\{\eta \in \mathcal{H}: \exists \psi \in \mathcal{H} \text { such that }(A \phi, \eta)=(\phi, \psi) \forall \phi \in D(A)\}, \\ A^{*} \eta=\psi .\end{array}\right.$

Remarks 1.2.

(1) A^{*} is well defined.

If there exists $\tilde{\psi} \in \mathcal{H}$ such that

$$
(A \phi, \eta)=(\phi, \psi)=(\phi, \tilde{\psi})
$$

Then

$$
(\phi, \psi-\tilde{\psi})=0 \text { for all } \phi \in D(A)
$$

which implies that $\psi \equiv \tilde{\psi}$ since $D(A)$ is dense in \mathcal{H}.
(2) We have that
(1.1) $D\left(A^{*}\right)=\{\eta \in \mathcal{H}: L \eta: \phi \in D(A) \mapsto(A \phi, \eta)$ is continuous $\}$.

Indeed, we can extend $\overline{L \eta}: D(A)=\mathcal{H} \rightarrow \mathbb{C}$ continuous. i.e.
$L \eta \in \mathcal{H}^{*}$ implies there exists $\psi \in \mathscr{H}$ such that

$$
\overline{L \eta}(\phi)=(\phi, \psi) \quad \forall \phi \in \mathcal{H}
$$

by the Riesz Theorem.
In particular, it holds that

$$
(A \phi, \eta)=(\phi, \psi) \quad \forall \phi \in D(A) .
$$

(3) It holds that

$$
\begin{equation*}
(A \phi, \eta)=\left(\phi, A^{*} \eta\right), \quad \forall \phi \in D(A), \forall \eta \in D\left(A^{*}\right) \tag{1.2}
\end{equation*}
$$

Verify that $A^{*}: D\left(A^{*}\right) \subset \mathcal{H} \rightarrow \mathcal{H}$ defines a linear operator.

Exercise 1.3. If $A \in \mathcal{B}(\mathcal{H})$, show that $A^{*} \in \mathcal{B}(\mathcal{H})$ and it holds that

$$
(A f, g)=\left(f, A^{*} g\right) \quad \forall f, g \in \mathcal{H}
$$

and

$$
\|A\|=\left\|A^{*}\right\| .
$$

Properties. Let $A: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ and $B: D(B) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be two linear operators d.d. Then it holds that
(i) A^{*} is closed.
(ii) $(\lambda A)^{*}=\bar{\lambda} A^{*}$ for all $\lambda \in \mathbb{C}$.
(iii) $A \subseteq B$ implies that $B^{*} \subseteq A^{*}$.
(iv) $A^{*}+B^{*} \subseteq(A+B)^{*}$.
(v) $B^{*} A^{*} \subseteq(A B)^{*}$.
(vi) $A \subseteq A^{* *}$ where $A^{* *}=\left(A^{*}\right)^{*}$.
(vii) $(A+\lambda)^{*}=A^{*}+\bar{\lambda}$.

Theorem 1.4. Let $A: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ a linear operator d.d., then it holds that
(i) A^{*} is closed;
(ii) A is closable if and only if A^{*} is d.d. in this case $\bar{A}=A^{* *}$;
(iii) If A is closable, then $(\bar{A})^{*}=A^{*}$.

Proof. To prove this theorem we will need some definitions and lemmas.
We start by considering the Hilbert space $\mathcal{H} \times \mathcal{H}$ equipped with the inner product

$$
\left\langle\left(\phi_{1}, \psi_{1}\right),\left(\phi_{2}, \psi_{2}\right)\right\rangle=\left(\phi_{1}, \phi_{2}\right)_{\mathcal{H}}+\left(\psi_{1}, \psi_{2}\right)_{\mathcal{H}} .
$$

We define the operator

$$
\begin{aligned}
V: \mathcal{H} \times \mathcal{H} & \rightarrow \mathcal{H} \times \mathcal{H} \\
(\phi, \psi) & \mapsto V(\phi, \psi)=(-\psi, \phi) .
\end{aligned}
$$

Notice that V is a unitary operator. In fact,

$$
\begin{aligned}
\left\langle V\left(\phi_{1}, \psi_{1}\right), V\left(\phi_{2}, \psi_{2}\right)\right\rangle & =\left\langle\left(-\psi_{1}, \phi_{1}\right),\left(-\psi_{2}, \phi_{2}\right)\right\rangle \\
& =\left(\psi_{1}, \psi_{2}\right)+\left(\phi_{1}, \phi_{2}\right) \\
& =\left\langle\left(\phi_{1}, \psi_{1}\right),\left(\phi_{2}, \psi_{2}\right)\right\rangle .
\end{aligned}
$$

Lemma 1.5. If $V: \mathcal{H} \rightarrow \mathcal{H}$ is a unitary operator, then

$$
V\left(E^{\perp}\right)=V(E)^{\perp}, \quad \forall E \subseteq \mathcal{H},
$$

where E^{\perp} denotes the orthogonal set to E which is defined as

$$
E^{\perp}=\{\phi \in \mathcal{H}:(\phi, \eta)=0, \forall \eta \in E\} .
$$

Proof. Let $x \in E^{\perp}$ and $y=V(e) \in V(E)$, then

$$
\langle V(x), y\rangle=\langle V(x), V(e)\rangle=\langle x, e\rangle=0
$$

Thus $V(x) \in V(E)^{\perp}$ and so $V\left(E^{\perp}\right) \subset V(E)^{\perp}$.
Reciprocally, let $y \in V(E)^{\perp}$, since V is a bijection it implies there exists a unique $x \in \mathcal{H}$ such that $y=V(x)$.

If for all $e \in E$,

$$
\langle x, e\rangle=\langle V(x), V(e)\rangle=0
$$

this implies that $x \in E^{\perp}$ and so $y \in V\left(E^{\perp}\right)$. Thus $V(E)^{\perp} \subset V\left(E^{\perp}\right)$. This concludes the proof of the lemma.
$\underline{\text { Proof of (i) We denote by }}$

$$
G(A)=\{(x, A x): x \in D(A)\} \subseteq \mathcal{H} \times \mathcal{H}
$$

the graph of the operator A.
We can see that

$$
\begin{array}{rlrl}
(\phi, \eta) \in V(G(A))^{\perp} & \Longleftrightarrow\langle(\phi, \eta),(-A \psi, \psi)\rangle=0 & \forall \psi \in D(A) \\
& \Longleftrightarrow-(\phi, A \psi)+(\eta, \psi)=0 & \forall \psi \in D(A) \\
& \Longleftrightarrow(\phi, A \psi)=(\eta, \psi) & & \forall \psi \in D(A) \\
& \Longleftrightarrow(A \psi, \phi)=(\psi, \eta) & \forall \psi \in D(A) \\
& \Longleftrightarrow(\phi, \eta) \in G\left(A^{*}\right) . & &
\end{array}
$$

This shows that $G\left(A^{*}\right)=\{V(G(A))\}^{\perp}$ is closed. (since the orthogonal of a set is always a closed subspace). Thus A^{*} is a closed operator.

Lemma 1.6. If $E \subseteq \mathcal{H}$, then $\bar{E}=\left(E^{\perp}\right)^{\perp}$.
Proof. If $e \in E$ and $x \in E^{\perp}$, then $(e, x)=0$ and so $e \in\left(E^{\perp}\right)^{\perp}$. Hence $E \subset\left(E^{\perp}\right)^{\perp}$. Therefore $\bar{E} \subset\left(E^{\perp}\right)^{\perp}$.

Now we know that $\mathcal{H}=\bar{E} \oplus(\bar{E})^{\perp}$ because of the orthogonal projection Theorem.

On the other hand, $y \in(\bar{E})^{\perp}$ implies that $(y, x)=0$ for all $x \in \bar{E}$ and this means that $y \in E^{\perp}$. Similarly, $y \in E^{\perp}$ implies that $(y, x)=0$ for all $x \in E$ and so we have $(y, x)=0$ for all $x \in(\bar{E})^{\perp}$. We deduce from this that $(\bar{E})^{\perp}=E^{\perp}$.

Thus

$$
\mathcal{H}=\bar{E} \oplus E^{\perp}=E^{\perp} \oplus\left(E^{\perp}\right)^{\perp} .
$$

We conclude that $\bar{E}=\left(E^{\perp}\right)^{\perp}$.

Remark 1.7. From the orthogonal projection Theorem we deduce that for any $F \subset \mathcal{H}$ closed and for all $x \in \mathcal{H}$, there exists a unique $y=$ $\mathcal{P}_{F}(x) \in F$ such that $\left(x-\mathcal{P}_{F}(x), z\right)=0$ for all $z \in F$, then $x-\mathcal{P}_{F}(x) \in$ F^{\perp}, where $\mathcal{P}_{F}(x)$ denotes the projection on F at x.

Since $G(A) \subset \mathcal{H} \times \mathcal{H}$, we have from Lemma 1.6, Lemma 1.5 and the fact that V is unitary that

$$
\begin{aligned}
\overline{G(A)}=\left\{G(A)^{\perp}\right\}^{\perp} & =\left\{V^{2}\left(G(A)^{\perp}\right)\right\}^{\perp} \\
& =\left\{V\left[V\left(G(A)^{\perp}\right)\right]\right\}^{\perp}=\left\{V\left[G\left(A^{*}\right)\right]\right\}^{\perp}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\overline{G(A)}=\left\{V\left[G\left(A^{*}\right)\right]\right\}^{\perp} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(A^{*}\right)=\{V[G(A)]\}^{\perp} \tag{1.4}
\end{equation*}
$$

This means that A^{*} d.d. implies that A is closable.
Proof of (ii). If A^{*} is d.d then we deduce from (1.4) and (1.3) that

$$
\left\{V\left[G\left(A^{*}\right)\right]\right\}^{\perp}=G\left(A^{* *}\right)=\overline{G(A)}
$$

Then A is closable and $\bar{A}=A^{* *}$.
Reciprocally, if $D\left(A^{*}\right)$ were not dense in \mathcal{H}, let $\psi \in D\left(A^{*}\right)^{\perp}, \psi \neq 0$, then $(\psi, 0) \in G\left(A^{*}\right)^{\perp}$ which implies that $(0, \psi) \in\left\{V G\left(A^{*}\right)\right\}^{\perp}=\overline{G(A)}$ but by Lemma 1.17 in [4] we have that $\overline{G(A)}$ is not the graph of any linear operator, that is, A is not a closable operator. This implies (ii).
Proof of (iii). Let A be a closable operator, since A^{*} is closed and (ii) holds we deduce that

$$
A^{*}=\overline{A^{*}}=A^{* * *}=\left(A^{* *}\right)^{*}=(\bar{A})^{*}
$$

This completes the proof of Theorem 1.4.
Example 1.8. We consider once again the operator A defined by

$$
\left\{\begin{array}{l}
D(A)=C^{0}([0,1]) \subset L^{2}([0,1]) \rightarrow L^{2}([0,1]) \\
A f=\phi f(1) \quad \text { where } \phi \in L^{2}([0,1]), \phi \neq 0
\end{array}\right.
$$

In Example 1.21 in [4] we saw that the operator A is not closable. We shall show now that A^{*} is not densely defined.

Let $\eta \in \mathcal{H}=L^{2}([0,1])$, then

$$
(A f, \eta)=\int_{0}^{1} f(1) \phi(x) \bar{\eta}(x) d x
$$

Observe that the map

$$
f \in C([0,1]) \subset L^{2}([0,1]) \mapsto f(1) \in \mathbb{C}
$$

is not continuous in the L^{2} topology. (To see this, take for instance $f_{n}(x)=x^{n}$. It is easy to check that $f_{n} \xrightarrow{L^{2}} 0$ and $f_{n}(1)=1$.) As a consequence the only choice in order to have the map $f \mapsto(A f, \eta)$ continuous is taking $\eta \in L^{2}([0,1])$ such that

$$
\int_{0}^{1} \phi(x) \bar{\eta}(x) d x=0 .
$$

But this implies that

$$
\left\{\begin{array}{l}
D\left(A^{*}\right)=\{\phi\}^{\perp} \\
A^{*} \eta=0 .
\end{array}\right.
$$

In particular $\{\phi\}^{\perp}$ is not dense in $L^{2}([0,1])$.
1.1. Application. Differentiable operators are closable. Consider a differentiable operator of order m,

$$
P(x, D)=\sum_{\substack{|\alpha| \leq m \\ \alpha \in \mathbb{N}^{n}}} a_{\alpha}(x) D_{x}^{\alpha}
$$

where $a_{\alpha} \in C^{\infty}(\Omega)$ and $\Omega \subseteq \mathbb{R}^{n}$ is an open set.
We can define $P_{\text {min }}$ by

$$
\left\{\begin{array}{l}
D\left(P_{\min }\right)=C_{0}^{\infty}(\Omega) \subseteq L^{2}(\Omega) \\
P_{\min } \phi=P(x, D) \phi .
\end{array}\right.
$$

Taking $\phi, \psi \in C_{0}^{\infty}(\Omega)$, then

$$
\begin{aligned}
\left(P_{\min } \phi, \psi\right)_{0} & =\left(\sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_{x}^{\alpha} \phi, \psi\right)_{0} \\
& =\int_{\Omega} \sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_{x}^{\alpha} \phi(x) \overline{\psi(x)} d x \\
& =\sum_{|\alpha| \leq m} \int_{\Omega} a_{\alpha}(x) \partial_{x}^{\alpha} \phi(x) \overline{\psi(x)} d x \\
& =\sum_{|\alpha| \leq m}(-1)^{|\alpha|} \int_{\Omega} \phi(x) \overline{\partial_{x}^{\alpha}\left(a_{\alpha}(x) \psi(x)\right)} d x .
\end{aligned}
$$

This gives us

$$
\left(P_{\min } \phi, \psi\right)_{0}=(\phi, \zeta)_{0}
$$

where $\zeta=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} \partial_{x}^{\alpha}\left(\overline{a_{\alpha}} \psi\right)$. Hence defining $P_{\min }^{*}$ as

$$
\left\{\begin{array}{l}
D\left(P_{\min }^{*}\right)=C_{0}^{\infty}(\Omega) \\
P_{\min }^{*} \psi=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} \partial_{x}^{\alpha}\left(\overline{a_{\alpha}} \psi\right)
\end{array}\right.
$$

This implies that $P_{\min }^{*}$ is densely defined and from Theorem 1.4 it follows that $P_{\min }$ is a closable operator.

1.2. Symmetric and Self-Adjoint Operators.

Definition 1.9. Let $A: D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator.
(i) We say that A is a symmetric operator if

$$
(A \phi, \psi)=(\phi, A \psi), \quad \text { for all } \phi, \psi \in D(A)
$$

This is equivalent to say that $A \subseteq A^{*}$.
(ii) We say that A is a self-adoint operator if $A=A^{*}$.

Exercise 1.10. We say that a linear operator A is a maximal symmetric operator if

$$
A \subseteq A^{*}
$$

and

$$
A \subseteq B, B \subseteq A^{*} \quad \text { then } A=B
$$

Prove that if $A=A^{*}$ then A is maximal symmetric.

Example 1.11. The operator H_{0} is symmetric, i.e. $H_{0} \subseteq H_{0}^{*}$. We recall that

$$
\left\{\begin{array}{l}
D\left(H_{0}\right)=H^{2}\left(\mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{n}\right) \\
H_{0} f=-\Delta f
\end{array}\right.
$$

For all $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left(H_{0} f, g\right)_{0} & =-\int_{\mathbb{R}^{n}} \Delta f(x) \overline{g(x)} d x \\
& =-\sum_{j=1}^{n} \int_{\mathbb{R}^{n}} \partial_{x_{j}}^{2} f(x) \overline{g(x)} d x \\
& =-\sum_{j=1}^{n} \int_{\mathbb{R}^{n}} f(x) \partial_{x_{j}}^{2} \overline{g(x)} d x .
\end{aligned}
$$

Then

$$
\left(H_{0} f, g\right)_{0}=\left(f, H_{0} g\right)_{0} \quad \forall f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Now let $f, g \in H^{2}\left(\mathbb{R}^{n}\right)$, there exist $\left\{f_{j}\right\},\left\{g_{j}\right\} \subseteq \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $f_{j} \xrightarrow{H^{2}} f$ and $g_{j} \xrightarrow{H^{2}} g$.

Notice that $\overline{C_{0}^{\infty}\left(\mathbb{R}^{n}\right)} H^{2}=L^{2}\left(\mathbb{R}^{n}\right)$ (prove it!). Thus for any $j \in \mathbb{N}$ it holds that

$$
\left(H_{0} f_{j}, g_{j}\right)_{0}=\left(f_{j}, H_{0} g_{j}\right)_{0}
$$

and making $j \rightarrow \infty$ it follows that

$$
\left(H_{0} f, g\right)_{0}=\left(f, H_{0} g\right)_{0} .
$$

From the last identity we deduce that $H^{2}\left(\mathbb{R}^{2}\right)=D\left(H_{0}\right) \subseteq D\left(H_{0}^{*}\right)$ and $H_{0} \subseteq H_{0}^{*}$.

Is H_{0} a self-adjoint operator?

We need the following definition
Definition 1.12. Let $k \in \mathbb{N}, 1 \leq p \leq \infty$. Given a domain $\Omega \subset \mathbb{R}^{n}$, the Sobolev space $W^{k, p}(\Omega)$ is defined as,

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega), \forall|\alpha| \leq k\right\} .
$$

We equipped the Sobolev space with the norm

$$
\|u\|_{W^{k, p}(\Omega)}= \begin{cases}\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}, & 1 \leq p<\infty . \\ \max _{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}, & p=\infty .\end{cases}
$$

It is usual to denote $W^{k, 2}(\Omega)$ by $H^{k}(\Omega)$ for it is a Hilbert space with the norm $W^{k, 2}(\Omega)$.
Example 1.13. Consider the operators $A_{j}=\frac{1}{i} \frac{d}{d x}, j=0,1,2$ with

$$
\begin{aligned}
& D\left(A_{0}\right)=H^{1}([-\pi, \pi]) \subseteq L^{2}([-\pi, \pi]) \\
& D\left(A_{1}\right)=\left\{\phi \in H^{1}([-\pi, \pi]): \phi(-\pi)=\phi(\pi)\right\} \\
& D\left(A_{2}\right)=\left\{\phi \in H^{1}([-\pi, \pi]): \phi(-\pi)=\phi(\pi)=0\right\}
\end{aligned}
$$

We will see that
(i) A_{1} and A_{2} are symmetric operators.
(ii) A_{0} is not a symmetric operator.
(iii) $A_{2}=A_{0}^{*}\left(\subseteq A_{0}\right)$ this implies that $A_{2}^{*}=A_{0}^{* *}=\overline{A_{0}}=A_{0}$ but $A_{0} \supsetneq A_{2}$ and so these operators are not self-adjoints.
(iv) $A_{1}^{*}=A_{1}$.

Proof of (i). Let $\phi, \psi \in D\left(A_{0}\right)$ then

$$
\begin{aligned}
\left(A_{0} \phi, \psi\right) & =\left(\frac{1}{i} \phi^{\prime}, \psi\right)_{L^{2}}=\frac{1}{i} \int_{-\pi}^{\pi} \phi^{\prime}(x) \overline{\psi(x)} d x \\
& =\left.\frac{1}{i} \phi(x) \overline{\psi(x)}\right|_{-\pi} ^{\pi}-\frac{1}{i} \int_{-\pi}^{\pi} \phi(x) \overline{\psi^{\prime}(x)} d x \\
& =\frac{1}{i}[\phi(\pi) \bar{\psi}(\pi)-\phi(-\pi) \bar{\psi}(-\pi)]-\frac{1}{i} \int_{-\pi}^{\pi} \phi(x) \overline{\psi^{\prime}(x)} d x
\end{aligned}
$$

This holds for absolutely continuous functions. Then

$$
\begin{equation*}
\left(A_{0} \phi, \psi\right)=\frac{1}{i}[\phi(\pi) \bar{\psi}(\pi)-\phi(-\pi) \bar{\psi}(-\pi)]+\left(\phi, A_{0} \psi\right)_{L^{2}} \tag{1.5}
\end{equation*}
$$

for all $\phi, \psi \in H^{1}([-\pi, \pi])$.
Therefore if $\phi, \psi \in D\left(A_{j}\right), j=1,2$, we deduce that

$$
\left(A_{j} \phi, \psi\right)_{L^{2}}=\left(\phi, A_{j} \psi\right)_{L^{2}} \quad j=1,2,
$$

which implies that $A_{1} \subseteq A_{1}^{*}$ and $A_{2} \subseteq A_{2}^{*}$.
Proof of (ii). In addition, there exist $\phi, \psi \in H^{1}([-\pi, \pi])$ such that

$$
\phi(\pi) \bar{\psi}(\pi) \neq \phi(-\pi) \bar{\psi}(-\pi)
$$

it yields

$$
\left(A_{0} \phi, \psi\right)_{L^{2}} \neq\left(\phi, A_{0} \psi\right)
$$

which implies that $A_{0} \subsetneq A_{0}^{*}$.
Proof of (iii). Now let $\phi \in D\left(A_{0}\right)$ and $\psi \in D\left(A_{2}\right)$, then from (1.5) it follows that

$$
\left(A_{0} \phi, \psi\right)=\left(\phi, A_{2} \psi\right)
$$

which implies that $A_{2} \subseteq A_{0}^{*}$.
To prove that $A_{0}^{*} \subseteq A_{2}$ it is enough to verify $D\left(A_{0}^{*}\right) \subseteq D\left(A_{2}\right)$.
Claim. If $\eta \in D\left(A_{0}^{*}\right)$, then

$$
\begin{equation*}
\int_{-\pi}^{\pi} A_{0}^{*} \eta(y) d y=0 \tag{1.6}
\end{equation*}
$$

Indeed, since $1 \in H^{1}([-\pi, \pi])$, it follows that

$$
\int_{-\pi}^{\pi} \overline{A_{0}^{*} \eta(y)} d y=\left(1, A_{0}^{*} \eta\right)=\left(A_{0}(1), \eta\right)=0 .
$$

Let $\eta \in D\left(A_{0}^{*}\right)$, we define $w(x)=i \int_{-\pi}^{x} A_{0}^{*} \eta(y) d y$. Then $w(-\pi)=$ $w(\pi)=0$ and so $w \in D\left(A_{2}\right)$ (prove it!).

Moreover,

$$
A_{2} w=\frac{1}{i} w^{\prime}(x)=A_{0}^{*} \eta(x)
$$

But since $A_{2} \subseteq A_{0}^{*}$ we have $A_{0}^{*} w=A_{2} w$. Thus

$$
\begin{align*}
0 & =\left(\phi, A_{0}^{*}(w-\eta)\right) \\
& =\left(A_{0} \phi, w-\eta\right) \quad \forall \phi \in D\left(A_{0}\right) . \tag{1.7}
\end{align*}
$$

This implies that $w=\eta \in D\left(A_{2}\right)$ and so $D\left(A_{0}^{*}\right) \subseteq D\left(A_{2}\right)$.
To deduce the last affimation we have used that

$$
C_{0}^{\infty}([-\pi, \pi]) \subseteq \overline{\left(R\left(A_{0}\right)\right)}=L^{2}([-\pi, \pi])
$$

then taking $u \in C_{0}^{\infty}([-\pi, \pi])$ we have that $v(x)=\int_{-\pi}^{x} u(y) d y \in D\left(A_{0}\right)$ and $A_{0} v=u$.
$\underline{\text { Proof of (iv). Notice that } A_{2}=A_{0}^{*} \subseteq A_{1} \subseteq A_{0} \text {. Then } A_{0}^{*} \subseteq A_{1}^{*} \subseteq}$ $\overline{A_{0}^{* *}}=\overline{A_{0}}=A_{0}$. Thus for all $\psi \in D\left(A_{1}^{*}\right)$,

$$
A_{1}^{*} \psi=\frac{1}{i} \psi^{\prime}
$$

From (ii) we already know that $A_{1} \subseteq A_{1}^{*}$, we need to show now that $D\left(A_{1}^{*}\right) \subseteq D\left(A_{1}\right)$.

By the identity (1.5) it follows that for all $\phi \in D\left(A_{1}\right)$, and for all $\psi \in D\left(A_{1}^{*}\right)$,

$$
\left(A_{1} \phi, \psi\right)_{L^{2}}=\left(\phi, A_{1}^{*} \psi\right)
$$

since $A_{1}^{*} \subseteq A_{0}$ and

$$
\phi(\pi) \bar{\psi}(\pi)-\phi(-\pi) \bar{\psi}(-\pi)=\phi(\pi)(\bar{\psi}(\pi)-\bar{\psi}(-\pi)) .
$$

This implies that

$$
\phi(\pi)(\bar{\psi}(\pi)-\bar{\psi}(-\pi))=0 .
$$

Choosing $\phi \equiv 1 \in D\left(A_{1}\right)$ it follows that $\psi(\pi)=\psi(-\pi)$, that is, $\psi \in D\left(A_{1}\right)$ that concludes the proof.

Remark 1.14. From this example we can see that it is not easy at all to establish when a linear symmetric operator is self-adjoint just by using the definition. In what follows we will establish a criteria to determine when a symmetric operator is self-adjoint.
1.3. Basic Criteria. The next result is an effective tool to determine when a symmetric operator is sefl-adjoint.

Theorem 1.15. Let $A: D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ a linear operator d.d. such that $A \subseteq A^{*}$, then the following assertions are equivalent:
(i) $A=A^{*}$;
(ii) A is closed and $\operatorname{Ker}\left(A^{*} \pm i\right)=\{0\}$;
(iii) $R(A \pm i)=\mathcal{H}$.

Remarks 1.16.

(1) The linear operator A does have any special feature, i.e. the criteria holds for $\pm \lambda i, \lambda>0$.
(2) To prove (iii) \Longrightarrow (ii) it is necessary to have $R(A+i)=\mathcal{H}$ and $R(A-i)=\mathcal{H}$.

Proof.

(i) \Longrightarrow (ii). If $A=A^{*}$, then A is closed.

Let now $\phi \in D\left(A^{*}\right)=D(A)$ such that $A^{*} \phi=i \phi$. Then

$$
\begin{aligned}
i\|\phi\|^{2}=(i \phi, \phi)=\left(A^{*} \phi, \phi\right) & =(A \phi, \phi) \\
& =\left(\phi, A^{*} \phi\right)=(\phi, i \phi)=-i\|\phi\|^{2} .
\end{aligned}
$$

This implies that $\phi=0$, that is, $\operatorname{Ker}\left(A^{*}-i\right)=\{0\}$.
Similarly, we will have $\operatorname{Ker}\left(A^{*}+i\right)=\{0\}$.
(ii) \Longrightarrow (iii). We will follow the following strategy:
(1) We first prove that $R(A \pm i)^{\perp}=\{0\}$.
(2) Then we show that $R(A \pm i)$ is closed.

Thus we can conclude that $R(A \pm i)=\mathcal{H}$. The latter follows from the orthogonal projection Theorem.

Affirmation. Let $B: D(B) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator d.d., then

$$
R(B)^{\perp}=\operatorname{Ker} B^{*} .
$$

Proof of the Affirmation. (\subseteq) Let $\phi \in R(B)^{\perp}$, then for all $\psi \in D(B)$ we have that $(B \psi, \phi)=0$. It follows that $\phi \in D\left(B^{*}\right)$ and $B^{*} \phi=0$ which implies that $\phi \in \operatorname{Ker} B^{*}$.
(\supseteq) Let $\phi \in \operatorname{Ker} B^{*}$ then for all $\psi \in D(B)$

$$
(B \psi, \phi)=\left(\psi, B^{*} \phi\right)=0
$$

we conclude that $\phi \in R(B)^{\perp}$. This completes the proof of the affirmation.

Now we suppose (ii), we deduce from the affirmation that

$$
R(A \pm i)^{\perp}=\operatorname{Ker}(A \pm i)^{*}=\operatorname{Ker}\left(A^{*} \mp i\right)=\{0\}
$$

where we use property (vii) in page 2 . The identity above gives us (1).
Next we shall show (2), i.e. $R(A \pm i)$ is closed.
Let $\left\{f_{j}\right\} \subset R(A \pm i)$ such that $f_{j} \xrightarrow{\mathcal{H}} f$. For all j there exist ϕ_{j} such that $f_{j}=(A \pm i) \phi_{j}$.
On the other hand, for all $\phi \in D(A)$ we have that

$$
\begin{aligned}
\|(A \pm i) \phi\|^{2} & =((A \pm i) \phi,(A \pm i) \phi) \\
& =(A \phi, A \phi) \pm i(\phi, A \phi) \mp i(\phi, A \phi)-i^{2}(\phi, \phi)
\end{aligned}
$$

Using that $A \subseteq A^{*}$ we conclude that

$$
\begin{equation*}
\|(A \pm i) \phi\|^{2}=\|A \phi\|^{2}+\|\phi\|^{2} . \tag{1.8}
\end{equation*}
$$

From (1.8) we have that

$$
\begin{equation*}
\left\|f_{j}-f_{l}\right\|^{2}=\left\|A\left(\phi_{j}-\phi_{l}\right)\right\|^{2}+\left\|\phi_{j}-\phi_{l}\right\|^{2} \quad \forall j, l . \tag{1.9}
\end{equation*}
$$

Then we deduce from (1.9) that

$$
\left\{\begin{array}{l}
\left\|\phi_{j}-\phi_{l}\right\| \leq\left\|f_{j}-f_{l}\right\| \underset{\substack{, l \rightarrow \infty}}{\rightarrow} 0 \\
\left\|A\left(\phi_{j}-\phi_{l}\right)\right\| \leq\left\|f_{j}-f_{l}\right\| \underset{j, l \rightarrow \infty}{\rightarrow} 0
\end{array}\right.
$$

Thus $\left\{\phi_{j}\right\}$ and $\left\{A \phi_{j}\right\}$ are Cauchy sequences in \mathcal{H}. Since \mathcal{H} is complete it follows that there exist $\phi, \psi \in \mathcal{H}$ such that

$$
\left\{\begin{array}{l}
\phi_{j} \xrightarrow{\mathcal{H}} \phi \\
A \phi_{j} \xrightarrow{\mathcal{H}} \psi
\end{array}\right.
$$

as $j \rightarrow \infty$.
Since A is closed it follows that $\phi \in D(A)$ and $\psi=A \phi$.
Thus

$$
(A \pm i) \phi_{j} \underset{j \rightarrow \infty}{\rightarrow}(A \pm i) \phi \in R(A \pm i)
$$

Therefore $R(A \pm i)$ is closed.
(iii) \Longrightarrow (i). We already know that $A \subseteq A^{*}$. Left to show that $\overline{D\left(A^{*}\right) \subseteq D(A)}$.

Let $f \in D\left(A^{*}\right)$, by hypothesis $R(A-i)=\mathcal{H}$. Hence there exists $\phi \in D(A)$ such that

$$
\left(A^{*}-i\right) f=(A-i) \phi \underset{A \subseteq A^{*}}{\overline{\bar{A}}}\left(A^{*}-i\right) \phi .
$$

From this we conclude that

$$
f-\phi \in \operatorname{Ker}\left(A^{*}-i\right)=\operatorname{Ker}(A+i)^{*}=R(A+i)^{\perp}=\{0\}
$$

Thus $f=\phi \in D(A)$. Above we used the affirmation and the fact that $R(A+i)=\mathcal{H}$.

Corollary 1.17 (Spectrum of a self-adjoint operator). If $A=A^{*}$, then

$$
\sigma(A) \subseteq \mathbb{R}
$$

Proof. The basic criteria implies that for all $\lambda>0$,

$$
\left\{\begin{array}{l}
\operatorname{Ker}(A \pm i \lambda)=\{0\} \\
R(A \pm i \lambda)=\mathcal{H}
\end{array}\right.
$$

From this we conclude that $\pm i \lambda \in \rho(A)$ for all $\lambda>0$. If we denote $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$, then $i \mathbb{R}^{*} \subseteq \rho(A)$.

Moreover, for all $\eta>0$ we obtain

$$
(A+\eta)^{*}=A^{*}+\bar{\eta}=A^{*}+\eta .
$$

From this it follows then that

$$
\left\{\begin{array}{l}
\operatorname{Ker}(A+\eta \pm i \lambda)=\{0\} \\
R(A+\eta \pm i \lambda)=\mathcal{H}
\end{array}\right.
$$

Hence $\eta \pm i \lambda \in \rho(A)$, for all $\eta \in \mathbb{R}$ and $\lambda>0$. Therefore $\mathbb{C} \backslash \mathbb{R} \subset \rho(A)$. In other words, $\sigma(A) \subset \mathbb{R}$.

Definition 1.18. A linear symmetric operator $\left(A \subseteq A^{*}\right)$ is called an essentially self-adjoint operator, if and only if, \bar{A} is self-adjoint. That is, $\bar{A}^{*}=A^{*}=\bar{A}$.

We can state another version of the Basic Criteria with the same proof as follows.

Theorem 1.19. Let A be a symmetric operator ($A \subseteq A^{*}$), then the following statements are equivalent.
(i) $\bar{A}=A^{*}$ (A is essentially self-adjoint);
(ii) $\operatorname{Ker}\left(A^{*} \pm i\right)=\{0\}$;
(iii) $\left(A^{*} \pm i\right)$ are dense in \mathcal{H}.

Example 1.20. The operator $H_{0_{\min }}$ is essentially self-adjoint (prove $i t!$).

References

[1] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Volumes 1, 2
[2] E. Hille, Methods in Classical and Functional Analysis
[3] T. Kato, Perturbation Theory
[4] Notes on Unbounded Operators.

