Teoria Espectral

1. ADJOINT. SYMMETRIC AND SELF-ADJOINT OPERATORS

We assume that JH is a Hilbert space. In this section we will define
self-adjoint unbounded operators and study its properties.

Definition 1.1. Let A: D(A) C H — H be a linear operator densely

defined (d.d.) i.e. D(A) = K.
We define the adjoint A* of the operator A by

{D(A*) = {n € X : I € H such that (Ap,n) = (,4) ¥é € D(A)},
Afn = 1.

Remarks 1.2.

(1) A* is well defined.
If there exists 1 € J such that

(Ag.n) = (6.9) = (¢,9)
Then
(6,1 — ) =0 for all¢ € D(A)
which implies that ¢ = 1 since D(A) is dense in H.
(2) We have that
(1.1) DA ={nedH: Ln:¢ e D(A)— (Ap,n) is continuous}.

Indeed, we can extend Ln : D(A) = 3 — C continuous. i.e.
Ln € H* implies there exists b € H such that

Ln(¢) = (¢,¢) Vo € H

by the Riesz Theorem.
In particular, it holds that

(Ap,n) = (¢,¢) V¢ € D(A).
(3) It holds that
(1.2) (Ap,n) = (¢, A™n), V¢ € D(A), Vn € D(A").
Verify that A* : D(A*) C H — H defines a linear operator.
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Exercise 1.3. If A € B(H), show that A* € B(H) and it holds that

(Af,9) = (f,A"9) VfgeXH
and

A} = 1[A™]].

Properties. Let A: D(A) CH — H and B: D(B) C H — H be
two linear operators d.d. Then it holds that

(i) A* is closed.

Theorem 1.4. Let A: D(A) C H — H a linear operator d.d., then it
holds that

(i) A* is closed; B
(ii) A is closable if and only if A* is d.d. in this case A = A**;

(i) If A is closable, then (A)* = A*.
Proof. To prove this theorem we will need some definitions and lemmas.

We start by considering the Hilbert space H x H equipped with the
inner product

((01,¢1), (92,92)) = (01, P2)3c + (Y1, ¥2)sc.
We define the operator

ViHXH->HxH
(¢, 0) = V(e,¥) = (=¢,9).
Notice that V' is a unitary operator. In fact,
(V(01,¢1), V(d2,¥h2)) = (=1, 1), (=2, ¢2))

= (Y1, %2) + (61, ¢2)

= (01, ¢1), (P2, ¢2)).
Lemma 1.5. If V : H — H is a unitary operator, then

V(EH) =V(E):, VECHXH,
where E+ denotes the orthogonal set to E which is defined as
Et={6cH:(p,n)=0, ¥nec E}.



Proof. Let x € E+ and y = V(e) € V(E), then
(V(z),y) = (V(x),V(e)) = (z,e) = 0.
Thus V(z) € V(E)* and so V(E') C V(E)*.

Reciprocally, let y € V(E)*, since V is a bijection it implies there
exists a unique x € H such that y = V(z).
If for all e € E,

(z,e) = (V(2),V(e)) =0
this implies that € E+ and so y € V(E*). Thus V(E)* C V(E*).
This concludes the proof of the lemma. O
Proof of (i) We denote by
G(A) ={(z,Az) :x € D(A)} C H x K.

the graph of the operator A.
We can see that

(6,m) € V(G(A)T <= ((d,1). (~A¥,¢)) =0 Vi € D(A)
= —(0,AY) +(n,¢) =0 VY e D(A)
— (¢, AY) = (n,9) Vi) € D(A)
— (AY,9) = (¢,n) Vip € D(A)
> (&) € G(AY).

This shows that G(A*) = {V(G(A))}+ is closed. (since the orthogo-
nal of a set is always a closed subspace). Thus A* is a closed operator.

Lemma 1.6. If E C H, then E = (E+)*.

Proof. If ¢ € E and x € E*, then (e,x) = 0 and so e € (E+)*. Hence
E C (EY)*. Therefore E C (E+)*.

Now we know that H = F @ (E)* because of the orthogonal projec-
tion Theorem.

On the other hand, y € (E)* implies that (y,z) = 0 for all z € E
and this means that y € E+. Similarly, y € E* implies that (y,z) = 0
for all z € E and so we have (y,z)=0 for all z € (E)*. We deduce
from this that (E)* = E*.

Thus

H=E®E+=E"o(EH)
We conclude that £ = (E+)*. O
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Remark 1.7. From the orthogonal projection Theorem we deduce that
for any F C H closed and for all x € H, there exists a unique y =
Pr(x) € F such that (v —Pp(z),2) =0 forall z € F, then v —Pp(z) €
F*, where Pr(z) denotes the projection on F at x.

Since G(A) C H x H, we have from Lemma 1.6, Lemma 1.5 and the
fact that V is unitary that

G(A) = {GA) M = {VAGA)H}
= {VIV(GA))} ={VIGA]}

Thus,

(1.3) G(A) = {VI[G(A)]}*
and

(1.4) G(A") = {V[G(A)}*

This means that A* d.d. implies that A is closable.
Proof of (ii). If A* is d.d then we deduce from (1.4) and (1.3) that
{(VIGA]} = G(A™) = G(A).
Then A is closable and A = A**.

Reciprocally, if D(A*) were not dense in 3, let ¢ € D(A*)*, ¢ # 0,
then (¢,0) € G(A*)* which implies that (0,) € {VG(A*)}+ = G(A)

but by Lemma 1.17 in [4] we have that G(A) is not the graph of any
linear operator, that is, A is not a closable operator. This implies (ii).

Proof of (iii). Let A be a closable operator, since A* is closed and (ii)
holds we deduce that

This completes the proof of Theorem 1.4. U

Example 1.8. We consider once again the operator A defined by
D(A) = C°([0,1]) € L2([0, 1]) — L*([0, 1])
Af =6 (1) where ¢ € L([0,1]), ¢ £ 0.

In Example 1.21 in [4] we saw that the operator A is not closable.
We shall show now that A* is not densely defined.

Let n € H = L*([0,1]), then

MﬁmzlmeMWMx



Observe that the map
fec(o,1)) c L*([0,1)) = f(1) € C
is not continuous in the L* topology. (To see this, take for instance

folz) = a™. It is easy to check that f, 0 and fu(l) = 1.) As
a consequence the only choice in order to have the map f +— (Af,n)
continuous is taking n € L*([0,1]) such that

[ oty o=

{D(A*> — {¢}*

But this implies that

A*n=0.
In particular {¢}~+ is not dense in L*([0,1]).

1.1. Application. Differentiable operators are closable. Con-
sider a differentiable operator of order m,

P(z,D) = Z ao () DY

o] <m
aeN”

where a, € C*(£2) and Q2 C R" is an open set.
We can define P.;, by

D(Puin) = C5°(2) € L*(2)
mln¢ - P( 7D)¢'
Taking ¢, 1 € C5°(€2), then

(Puin® )0 = (Y aa(®)d56,¢)o

la|<m

/Zaa )0 () (z) de

|a|<m

= 3 [ al)zola)ita) da

|a|<m

= > (= /Q &(2)02 (aa(2)P(2)) dz.

laj<m

This gives us

(Pmingba ¢)0 - (¢7 C)O
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where ( = Y (=1)492(a, ). Hence defining P, as
la<m

D(Pyin) = G2 (),
Prnt = > (=1)lo2(ag ¢).

laf<m

This implies that Py, is densely defined and from Theorem 1.4 it

follows that P, is a closable operator.

1.2. Symmetric and Self-Adjoint Operators.
Definition 1.9. Let A: D(A) C H — H be a linear operator.

(i) We say that A is a symmetric operator if
(Ao, 1) = (¢, Ap),  for all ¢,4 € D(A).
This is equivalent to say that A C A*.

(ii) We say that A is a self-adoint operator if A = A*.

Exercise 1.10. We say that a linear operator A is ¢ maximal sym-
metric operator if

AC A"
and

ACB, BCA* then A=B.

Prove that if A = A* then A is mazimal symmetric.

Example 1.11. The operator Hy is symmetric, i.e. Hy C Hj. We
recall that

D(H,) = H2(R") C L%(R")
Hof = -Af
For all f,g € C§°(R"™),

(Hof.g) = - |

R

N KA OrELE

:—zjwﬂ@%ﬂEM-

Af(z) g(w) de



Then
(Hof,9)o = (f, Hoglo V[, g€ 8(R").
Now let f,g € H*(R™), there exist {f;}, {g;} C S(R™) such that
H? H?
fi—= fandg;—g. i
Notice that C’(‘)’O(R”)H = L*(R") (prove it!). Thus for any j € N it
holds that

(Hofj, 95)o = (fj, Hogj)o
and making 7 — oo it follows that
(Hof,9)o = (f. Hog)o-
From the last identity we deduce that H*(R?) = D(H,) C D(H}) and
Hy C Hj.
Is H, a self-adjoint operator?

We need the following definition

Definition 1.12. Let k € N, 1 < p < oc0. Given a domain 2 C R”,
the Sobolev space W*P(Q) is defined as,

WkEP(Q) = {u € LP(Q) : D°u € LP(Q), V]a| < k).
We equipped the Sobolev space with the norm

1

(S D ulfe))”s 1<p <o

|| <k
HUHW’W(Q) =

max|| D*u|| (), p = o0.
|| <k

It is usual to denote W52(Q) by H*(Q) for it is a Hilbert space with
the norm Wk2(Q).

1
Example 1.13. Consider the operators A; = T 7 =0,1,2 with
i dx

D(Ao) = H'([-m,7]) € L*([~m,));

D(Ay) ={¢ € H'([-m,7]) : ¢

D(As) = {¢ € H'([-m,7]) : ¢(
We will see that

(i) Ay and Ay are symmetric operators.
(ii) Ao is not a symmetric operator. o
(ili) As = A (C Ag) this implies that A5 = Af* = Ay = Ap but

Ay 2 Ao and so these operators are not self-adjoints.



(IV) A = Al
Proof of (i). Let ¢,1p € D(Ay) then
(Ao6.0) = (o) =1 [ )7

=%¢x¢x ﬁ—;/;¢x

= X fotm) Btm) — o) ()] - 1 | oto) P

]

This holds for absolutely continuous functions. Then

(15) (Ao, )= [6(m) Blm) — o(~m) (=] +(6, Ag)s»

for all ¢, € HY([—7,7]).
Therefore if ¢, € D( i),7=1,2, we deduce that

( J ¢7¢>L2 = (¢7 AJ¢>L2 j - ]-7 27
which implies that A; C A} and Ay C AS.

Proof of (ii). In addition, there exist ¢,v € H'([—m,7]) such that
o(m) () # ¢(—m) (=)

it yields

(AO ¢> w)LQ 7é (¢7 AO ¢)
which implies that Ay C Ag.

Proof of (iii). Now let ¢ € D(Ap) and ¢ € D(Ay), then from (1.5) it
follows that

(A9, ¥) = (¢, Ax))
which implies that Ay C Aj.
To prove that Ay C Ay it is enough to verify D(Af) C D(Asz).

Claim. If n € D(Af), then
(1.6) / Agn(y) dy = 0.
Indeed, since 1 € H([—m,7]), it follows that

/_7r Aén( )dy = (1 Aon) (Ao(l),n) —0

Let n € D(Af), we define w(x) = z/ Ain(y) dy. Then w(—m) =
w(m) =0 and so w € D(Ay) (prove 2'75/).77r



Moreover,
1
Agw = T (z) = Agn(x)
)
But since Ay C Aj we have Ajw = Asw.Thus

= (Ao, w —mn) Vo € D(Ay).

This implies that w =n € D(As) and so D(A§) C D(As).
To deduce the last affimation we have used that

Co°([=m. 7)) € (R(Ap)) = L*([-,7])

(1.7)

then taking u € C§°([—m, 7|) we have that v(z) = / u(y) dy € D(Ay)

and Agv = u.

Proof of (iv). Notice that Ay = A5 C Ay C Ag. Then Ay C A C
Ay = Ag = Ay. Thus for all b € D(AY),

* ]'/
Alwzglﬁ

From (ii) we already know that A; C A%, we need to show now that
D(A7) € D(4y).
By the identity (1.5) it follows that for all ¢ € D(Ay), and for all
¥ € D(A}),
(A19,¥) 12 = (9, ATY)

since A7 C Ay and

B(mYB(m) — S(~m)d(~) = d{m) (B(m) — B(~)).
This implies that
¢(m) (W (7) = (=) = 0.

Choosing ¢ = 1 € D(Ay) it follows that ¢(mw) = (—n), that is,
1 € D(Ay) that concludes the proof.

Remark 1.14. From this example we can see that it is not easy at
all to establish when a linear symmetric operator is self-adjoint just
by using the definition. In what follows we will establish a criteria to
determine when a symmetric operator is self-adjoint.
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1.3. Basic Criteria. The next result is an effective tool to determine
when a symmetric operator is sefl-adjoint.

Theorem 1.15. Let A: D(A) C H — H a linear operator d.d. such
that A C A*, then the following assertions are equivalent:

(i) A= A*
(ii) A is closed and Ker(A* i) = {0};
(iii) R(A+1i) =K.

Remarks 1.16.

(1) The linear operator A does have any special feature, i.e. the
criteria holds for £Xi, A > 0.

(2) To prove (iii) == (ii) it is necessary to have R(A+1i) = H
and R(A —1i) = H.

Proof.

(i) = (ii). If A= A*, then A is closed.
Let now ¢ € D(A*) = D(A) such that A*¢ =i¢. Then

ilo* = (ip, ¢) = (A"¢,¢) = (A9, 9)
= (6, A"¢) = (¢,i¢) = —io]*.

This implies that ¢ = 0, that is, Ker(A* — i) = {0}.
Similarly, we will have Ker(A* +1i) = {0}.

(i) = (iii). We will follow the following strategy:

(1) We first prove that R(A +4)* = {0}.
(2) Then we show that R(A £ 1) is closed.

Thus we can conclude that R(A +4) = H. The latter follows from the
orthogonal projection Theorem.

Affirmation. Let B : D(B) C H — JH be a linear operator d.d., then
R(B)* = KerB*.

Proof of the Affirmation. (C) Let ¢ € R(B)*, then for all ¢ € D(B)
we have that (Bvy,¢) = 0. It follows that ¢ € D(B*) and B*¢ = 0
which implies that ¢ € KerB*.

(D) Let ¢ € KerB* then for all ¢ € D(B)

(B, ¢) = (¢, B¢) =0
we conclude that ¢ € R(B)*. This completes the proof of the affirma-
tion. U
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Now we suppose (ii), we deduce from the affirmation that
R(A+i) = Ker(A+i)* = Ker(A* Fi) = {0}
where we use property (vii) in page 2. The identity above gives us (1).

Next we shall show (2), i.e. R(A£1) is closed.

Let {f;} C R(A £ 1) such that f; % f. For all j there exist ¢; such
On the other hand, for all ¢ € D(A) we have that

I(A£i)g|* = (A£ )¢, (AL i)¢)

Using that A C A* we conclude that

(1.8) (A £ 9ol = [[As]® + [0l
From (1.8) we have that
(1.9) 15 = fill? = [ A(¢; — o)|I> + o5 — dull® Vi, L.

Then we deduce from (1.9) that
e = aull <\ f5 = £l = 0,
J,t— 00
1A(; = ool < [1f5 = fill = 0
J,t—00

Thus {¢,} and {A¢;} are Cauchy sequences in . Since H is complete
it follows that there exist ¢, 1 € H such that

;5 ¢
Ay 5
as j — 00.
Since A is closed it follows that ¢ € D(A) and ¢ = Ag.

Thus
(A+ i)qﬁj :> (A+i)p € R(A=£1).

Therefore R(A £ i) is closed.

(ii) = (i). We already know that A C A*. Left to show that
D(A*) C D(A).
Let f € D(A*), by hypothesis R(A — i) = H. Hence there exists
¢ € D(A) such that
(A=) f =(A—i)¢
From this we conclude that
f—¢€ Ker(A* —i) = Ker(A+i)* = R(A +i)* = {0}

(A" = i)o.

AC A*
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Thus f = ¢ € D(A). Above we used the affirmation and the fact that
R(A +1i) = 5. 0

Corollary 1.17 (Spectrum of a self-adjoint operator). If A = A*, then
o(A) CR.
Proof. The basic criteria implies that for all A > 0,

Ker(A+£i\) = {0}
R(A+i)) = 3.

From this we conclude that £i\ € p(A) for all A > 0. If we denote
R* = R\{0}, then iR* C p(A).
Moreover, for all n > 0 we obtain
(A+n)"=A"+7=A"+n.
From this it follows then that

Ker(A+n+iX\) = {0},
R(A+n=+xi)) =9

Hence n £\ € p(A), for all n € R and A > 0. Therefore C\R C p(A).
In other words, o(A) C R. O

Definition 1.18. A linear symmetric operator (A C A*) is called an
essentially self-adjoint operator, if and only if, A is self-adjoint.
That is, A" = A* = A.

We can state another version of the Basic Criteria with the same
proof as follows.

Theorem 1.19. Let A be a symmetric operator (A C A*), then the
following statements are equivalent.
(i) A= A* (A is essentially self-adjoint);
(i) Ker(A*+1i) ={0};
(iii) (A* £14) are dense in .

Example 1.20. The operator Hy_. is essentially self-adjoint (prove
it!).
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